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Abstract
The miniaturization of electronics provides an opportunity for the polymer film capacitor due to
its lightweight and flexibility. In order to improve energy density and charge—discharge
efficiency of the film capacitor, the development of a polymer nanocomposite is one of the
effective strategies, in which the distribution of the fillers plays a key role in the enhancement of
the electrical energy capability. In this work, the few-layer boron nitride nanosheets (BNNSs)
was exfoliated with assistance of the fluoro hyperbranched polyethylene-graft-poly(trifluoroethyl
methacrylate) (HBPE-g-PTFEMA) copolymer as stabilizer, which was adsorbed on the surface
of the nanosheets via a CH-7 non-covalent interaction. The morphological results confirm the
lateral size of ~0.4 ym for resultant nanosheets with the intact crystal structure. The loading of
0.5 vol% BNNSs was embedded into poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-
CTFE)) matrix by solution casting method, and then the nanocomposite film was uniaxial
stretched to achieve the orientation of nanosheets in polymer host. The dielectric constant of
stretching nanocomposite with ratio of 4 at 50 mm min ' reaches 51.1 at 100 Hz with low loss as
0.016, while the energy density of 7.0J cm > at 250 MV m ™" with charge—discharge efficiency
of 56% is obtained in current nanocomposite film, which is attributed to the interfacial
polarization as well as parallel nanosheets blocking the growth of electrical treeing branches.
This strategy of the aligned nanosheets/polymer nanocomposite establishes a simple route to
construct heterogeneity in polymer films with enhanced electrical energy capability for flexible
capacitors.

Supplementary material for this article is available online
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Introduction

As one of the new-generation electrical storage technologies,
polymer film capacitors have advantages of lightweight,
processability, graceful reliability, and extremely fast dis-
charge release, which is a promising candidate in the appli-
cations of microelectronic devices, artificial biological organs
and sensors [1—4]. In general, the energy density (U,) of linear
polymer film is described as: U, = 1/2¢,60E;, 2, where ¢, is
relative permittivity, €, the vacuum permittivity, and Ej, is
practical breakdown strength, from which the discharged U,
is determined by the relative permittivity and the breakdown
strength of polymer dielectrics [5—8]. The biaxially oriented
polypropylene (BOPP), a commercially available polymer
film for capacitor, has an electrical density U, = ~2.3Jcm >
at 500 MV m ™!, which is ascribed to the low g = ~2.2 at
100 Hz [9—11]. Thus, the increase of dielectric property for
polymer film retaining high breakdown strength has become
the effective solution to improve the energy capability of film
capacitor [12-15].

The strategy of inorganic/organic nanocomposite has
been suggested as a feasible route to enhance the electrical
energy density of polymer capacitor [2, 8]. PVDF and its
associated copolymers exhibit high dielectric constant com-
pared with other polymers, which is recognized to be an ideal
candidate for next-generation dielectric capacitors [2, 6,
16-19]. High-k ceramics were preferentially considered in
PVDF-based nanocomposite to increase the dielectric con-
stant, including BaTiO; (BT), Ba,Sr,_,TiO; (BST),
Pb,Zr, _,TiO3 (PZT) and CaCu;TizO;, [20-24]. However,
the large loading of ceramic particles is usually accompanied
by the depression of breakdown field and mechanical prop-
erty of polymer nanocomposite, in which the defects are
ascribed to the agglomeration and the mismatch of the
permittivity between high-k ferroelectric ceramics and poly-
mer [5, 25].

The structural characteristic of boron nitride nanosheets
(BNNSs) is isoelectric analogous to graphene, though exhi-
bits electrical insulation, which is preferred for the energy
storage of film capacitor under high electric field. The energy
density U, = 7.25Jcm > at 486 MV m' was obtained in 8
wt% hydroxyl groups modified BNNSs/PVDF nanocompo-
site owing to the improved compatibility and breakdown
strength [26]. Additionally, the synergistic fillers of BNNSs
and modified BT were incorporated into crosslinked PVDF
(c-PVDF) matrix to suppress the leakage current, and
U,=521] cm > was achieved at 425MV m ! [27]. The
prerequisite for high energy density of polymer nanocompo-
site is that the nanosheets are dispersed stably in the matrix
with great compatibility, which is still a guide to improve the
performance of energy storage devices in the future [28].
Compared with the nanoparticles and nanowires widely used
in energy storage application, the paralleled 2D nanosheets
perform as a number of microcapacitors inside composites
[29-32]. When the array direction is perpendicular to the
electric field, the nanosheets as barriers block the electrical
treeing path [26, 33-35]. Developing an effective method to
tailor the orientation of nanofillers retains a challenge for

now. The aligned array of reduced graphene oxide (rGO) in
P(VDF-HFP) nanocomposite was obtained by repeatedly
spin-coating technology, in which the shear force and the
thickness were proposed as critical factors in the orientation
of rGO nanosheets [36].

In our previous work, the orientation of few-layer gra-
phene in P(VDF-HFP) was due to the combination of vis-
coelasticity for fluoropolymer and the entanglement effect
between matrix and nanosheets during uniaxial deformation
[37]. In order to further reduce the energy charge—discharge
loss and improve practical breakdown strength, we applied
insulating BNNSs as the parallel nanosheets in polymer
composite via optimal stretching process to block the growth
of electrical trees and enhance the energy capability. The
fluoro hyperbranched HBPE-g-PTFEMA was employed to
exfoliate the h-BN bulk into few-layer BNNSs as polymer
stabilizer against the aggregation of nanosheets. The resultant
flakes are dispersed uniformly in matrix due to the enhanced
compatibility between P(VDF-CTFE) and nanosheets, which
is ascribed to the fluoro segments of hyperbranched copoly-
mer adsorbed on the surface of the BNNSs via CH-7 inter-
action. The orientation of nanosheets in nanocomposite was
achieved by in-plane uniaxial deformation, in which the
aligned insulating nanoplates block the growth of electrical
treeing branches. The BNNSs/P(VDF-CTFE) nanocomposite
film under tensile ratio R = 4 with 50 mm min~"' exhibits the
U.=170] cm > at 250 MV m~!, which directly benefits
from interfacial polarization and the large content of elec-
troactive phase. This work highlights a convenient strategy to
develop the aligned few-layer BNNSs in PVDF-based nano-
composite for flexible film capacitors with high energy
density.

Experimental

Materials

Hexagonal boron nitride (2-BN) powder with size of ~1 pym
(98%) was purchased from Sigma Aldrich, and P(VDF-
CTFE) (9%-20% ratio of CTFE) with specific gravity
~1.80 gcm > was provided by Solvey. The N, N-dimethyl-
formamide (DMF, >99.5%) was supplied from Wuxi Haisuo
Biological Co. Hyperbranched polyethylene-graft-poly(tri-
fluoroethyl methacrylate) copolymer (HBPE-g-PTFEMA)
was synthesized by atom transfer radical polymerization
(ATRP) using 2,2,2-trifluoroethyl methacrylate (TFEMA)
with HBPE-Br as macroinitiator and Pd-diimine catalyst [38].

Preparation of BNNSs dispersion

The few-layer BNNSs was exfoliated from A-BN bulk in
DMF with assistance of hyperbranched HBPE-g-PTFEMA
copolymer that is adsorbed on the surface of the nanosheets
via non-covalent CH-r interaction. Typically, 320.0 mg of A-
BN powder and 320.0 mg of HBPE-g-PTFEMA were added
into glass container with 80 ml of DMF. Then, the mixture
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Table 1. Preparation for BNNSs/P(VDF-CTFE) nanocomposites
with different stretching conditions at 80 °C.

Sample  Stretching ratio  Stretching rate (mm min_])
1 R=0 0

2 R=2 50

3 R =

4 R =

5 R=6

6 R=4 3

7 10

8 20

9 200

was sonicated for 48 h at room temperature with a continuous
flow of water. Subsequently, the initial product was cen-
trifuged at 3000 rpm for 20 min in order to remove the resi-
dual #-BN particles. The supernatant was carefully collected
and further vacuum filtered by nylon 66 membrane with
200 nm to eliminate the excess HBPE-g-PTFEMA. Finally,
the white filter cake was dispersed in DMF under sonication,
and the stable BNNSs dispersion with concentration
Cp = 1.0 mgml~' was obtained.

Preparation of stretching BNNSs/P(VDF-CTFE)
nanocomposite

The P(VDF-CTFE) nanocomposite film with 0.5 vol%
BNNSs was prepared via simple solution casting. P(VDF-
CTFE) powders were initially stirred in DMF at room
temperature for 2 h. After the addition of the BNNSs dis-
persion, the suspension was stirred for 15 min, which was
then poured on the glass plate and dried at 80 °C for 10 h.
After peeled off the substrate, the free-standing nanocompo-
site film with a thickness of 40 um was further annealed at
120 °C for 10 h to eliminate the residual solvent and increase
the crystallinity. The parallel array of nanosheets was
accomplished by uniaxial stretching on Instron 5569 with an
isothermal environment. Briefly, the pre-stretched sample was
tailored to strips and held with fixtures in a temperature
controlled component at 80 °C for 10 min to achieve thermal
equilibrium of the film. Different drawing ratios (R) and rates
were performed to drive the nanosheets aligning along the
deformation direction. The detailed preparation parameters of
the various samples are listed in table 1.

Characterizations of BNNSs

High-resolution transmission electron microscopy (HRTEM,
300 kV JEM-100CX II electron microscope, FEI) images
were taken for the morphologies of nanosheets. The sample
for HRTEM was prepared by dropping the BNNSs dispersion
on the carbon-coated copper grid and removing the solvent
with an infrared lamp prior to observation. Raman spectra of
nanosheets were carried out on Renishaw Invia with 532 nm

excitation wavelength. In order to estimate the adsorption of
HBPE-g-PTFEMA on the surface of the nanosheets, x-ray
diffraction (XRD) patterns of BNNSs were collected on the
X’Pert PRO apparatus of Shimadzu (Cu Ko A= 1.54A) from
10° to 80° with 4° min~', and the free copolymer was filtered
before testing. Fourier transform infrared spectra (FT-IR,
Nicolet 6700, TA) were employed with the measurement
range from 4000cm ' to 400cm™' with increment of
2 cm™ . The surface morphology of BNNSs was examined by
atomic force microscopy (AFM, Bruker) with tapping mode.
The sample was deposited on the mica substrate and dried
vacuum at 80°C prior to characterization.

Characterization of nanocomposite films

XRD was used to evaluate the crystal structure of BNNSs/P
(VDF-CTFE) nanocomposite film with the scanning range
from 5° to 65° with the rate of 4 °/min. FT-IR spectra from
4000cm ™" to 650cm ' with increment of 0.5cm ' were
carried out to calculate the relative content of the J-phase in
the nanocomposite. AFM technology was applied to examine
the surface morphology of nanocomposite film with scanning
range of 10 yum x 10 um. The cross-sectional morphologies
of samples were observed via field emission scanning electron
microscopy (SEM, Nano SEM 450 equipment, FEI), and the
SEM sample was frozen-fractured in liquid nitrogen and
spray-coated with thin Pt conductive layer before character-
ization. The dielectric properties of the nanocomposite films
were tested at frequency from 10% to 10° Hz with 0.5 V rms
on Agilent 4294A LCR impedance analyzer. The electric
displacement loops were measured at 100 Hz by TREK 609B-
3-K-CE equipment from Radiant Technologies. The Pt layer
electrode of 0.0707 cm” was sprayed on both sides of the film
prior to examination.

Results and discussion

Morphology and nanostructure of BNNSs

The high-quality few-layer BNNSs were exfoliated from -
BN powder with assistance of hyperbranched polyethylene
(HBPE) as stabilizer in common organic solvents [39]. Dur-
ing the liquid-phase exfoliation HBPE is adsorbed on the
surface of nanosheets by non-covalent CH-m interaction,
which retains the stable dispersion of few-layer nanosheets
against re-stacking due to its hyperbranched topology struc-
ture. In order to enhance the compatibility between nanosh-
eets and fluoropolymer matrix, we synthesized the
hyperbranched HBPE-g-PTFEMA copolymer by tailoring the
fluoro PTFEMA segments on the functional ends of HBPE
via ATRP technique [38]. The process of one-step exfoliation
and simultaneous surface modification of BNNSs are illu-
strated schematically in figure 1. The received BNNSs were
dispersed stably in DMF, and the dispersion was added into
P(VDF-CTFE) solution to prepare the BNNSs/P(VDF-
CTFE) nanocomposite film via solution casting method.
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Figure 1. Schematic illustration for liquid-phase exfoliation of BNNSs in DMF with assistance of HBPE-g-PTFEMA and subsequently the

preparation of stretching BNNSs/P(VDF-CTFE) nanocomposite film.

Finally, the flexible film was uniaxially stretched at a constant
temperature to tune the orientation of nanosheets along the
direction of deformation, which is ascribed to the polymer
intrinsic viscoelasticity and the strong van der Waals forces
between matrix and fluoro copolymer attached on the surface
of nanosheets [37].

The morphology and crystal structure of the resultant
BNNSs are shown in figure 2, indicating the received BNNSs
with a smooth surface. It is suggested that the specific layer
number of nanosheets could be counted through the curled
edge from HRTEM image inset figure 2(a), which reveals that
the number of layers is statistically in the range 48 with the
lateral dimension of ~0.4 um. The corresponding selected
area electron diffraction (SAED) (inset of figure 2(b)) exhibits
clearly symmetric hexagonal diffraction ring with the reflec-
tions of (010), (110) and (020) crystalline planes [40]. The
six-membered ring structure in figure 2(b) are observed as a
typical atomic map, which identifies the intergal lattice
structure of nanoplate. The surface morphology of nanosheets
was examined by AFM, and the image is displayed in
figure 2(c), from which the flakes exhibit smooth surface. The
corresponding thicknesses from the height profiles in
figure 2(d) are 1.5, 1.4 and 1.6 nm, which is consistent with
the above TEM results. Furthermore, the Raman spectra in
figure 2(e) include the E,, characteristic peak around
1366 cm™! for both 4-BN and BNNSs samples due to the B—
N = B vibration mode. Compared with the curve for ~-BN
bulk, the peak of few-layer nanosheets in figure 2(f) is sur-
faced a red shift of 2 cm ™', which has been proposed as the

variation caused by the few-layer BNNSs [41]. Meanwhile,
the full width at half maximum (FWHM) decreases from
13.6cm ™! for A-BN to 10.1 ¢cm™' for the received BNNSs,
which also confirms that the few-layer nanosheets have been
successfully exfoliated from bulk 4-BN with the assistance of
HBPE-g-PTFEMA copolymer [42].

The obtained BNNSs are dispersed stably in the DMF
because the hyperbranched copolymer adsorbs onto the sur-
face of the nanosheets by the CH-7 interactions against the
flakes re-stacking. The attachment of fluoro HBPE-g-
PTFEMA copolymer was characterized by the XRD patterns
and FT-IR spectra that are shown in figures 2(g) and (h),
respectively. The pattern of #-BN bulk presents three distinct
peaks associated with crystal plane of (002), (100) and (104).
However, the intensities for these peaks are weakened in the
curve of the BNNSs with an amorphous broad peak, which is
assigned to the characteristic shape of the fluoro copolymer.
Similarly, the FT-IR spectrum of the nanosheets appears
several new peaks at 2930, 1752 and 1170 cmfl, which
belong to the stretching vibrations of C-H, C=0 and C-O in
the fluoro hyperbranched copolymer [38]. These results prove
the presence of HBPE-g-PTFEMA copolymer on the surface
of nanosheets that is accomplished with CH-7 non-covalent
interaction [39]. The terminal fluoro segments will yield
compatible BNNSs/P(VDF-CTFE) nanocomposite, which
accounts for the enhancement of dielectric property and
electrical energy capability of polymer film.
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Figure 2. Morphology and nanostructure of BNNSs obtained by liquid exfoliation: (a) HRTEM image, inset is the curled edges, (b) typical
atomic HRTEM image, the inset shows the corresponding electron-diffraction pattern, (c) AFM image, (d) the corresponding height profile in
AFM image, (e) and (f) the Raman spectra, (g) XRD curves, and (h) FT-IR spectra.
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Figure 3. XRD patterns for BNNSs/P(VDF-CTFE) nanocomposite films: (a) different ratios at 50 mm min~ ", (b) different stretching speeds
at R = 4; the surface morphologies by AFM: (c) original film and (d) stretching film with R = 4 at 50 mm min~".

Electroactive phase transition in nanocomposite

XRD technology is often applied to distinguish the different
phases of PVDF-based semi-crystalline polymers [3, 35]. As
displayed in figure 3(a), the original film has a weak char-
acteristic peak at 18.2°, which is corresponding to the (020)
plane of the non-polar «-phase, while another peak at
20 = 19.8° belongs to the (110) plane of the a-phase. The
strong diffraction at 19.8° for the original film approaches the
peak of (200) plane at 20.2° for the electroactive 3-phase due
to the heterogeneous nucleation of the BNNSs and orientation
effect of macromolecular chain [19]. The diffraction at 18.2°
for a-phase is substantially disappeared after deformation,
which strengthens the transition from «-phase to [-phase
under uniaxial force [17, 43]. The peak at 26.4° is assigned to
the (002) crystal plane for boron nitride, and its attenuation
implies partial dilution of nanosheets in the matrix as in-plane
deformation. The crystallinity was estimated from the XRD
curve, and the result is shown in supplemental information
figure S1, which is available online at stacks.iop.org/NANO/
31/165703 /mmedia. The crystallinity has been enhanced
significantly after stretching due to the orientation of the
macromolecular chain along the force direction. In addition,
the surface morphologies of the nanocomposite films taken by
AFM are presented in figures 3(c) and (d), from which the
distinct spherulite morphology is observed in the original
film. The external mechanical force induces the necking

phenomenon that the inner molecular chains are rearranged
along the force direction transforming into all-frans con-
formation (TTTT') for the (-phase [6].

In order to evaluate quantitatively the relative content of
the (-phase, the characteristic peaks for different crystal
phases examined by the FT-IR spectra are shown in the
figure 4. The peak at 763 cm™' is assigned to the bending
vibration of the CF, unit on the molecular backbone
belonging to the a-phase, and the peak at 836.cm ' is
regarded as the band for the S-phase, which is corresponding
to the rocking mode of CH, and CF, asymmetric stretching
[44]. After the stretching improvement, the intensity of peak
for the (-phase is enhanced accompanying with a slight
decrease of band at 763 cm™ " for a-phase. This trend echoes
the results of XRD, implying the phase transition during the
uniaxial deformation. Assuming the infrared absorption
complies with Lambert Beer’s law, the specific content of the
(B-phase (F(3)) is estimated by the following expression [44]:

Xy Ap
Xo + X5 (Ks/K)As + A’

F(B) = (D
where A, and Agj represents the absorbencies at 763 and
836cm'; K, and K are the absorption coefficients at the
respective wavenumbers, which are 6.1 x 10* and
7.7 x 10*cm? mol !, respectively. The relative contents of
(B-phase under different stretching conditions are illustrated in
figures 4(c) and (d). In the pre-stretched 0.5 vol% BNNSs /P
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(VDFE-CTFE) nanocomposite, the F(3) = 88% is reached due
to the combination of heterogenous nucleation of nanosheets
and thermal annealing effect. After the stretching treatment,
the content of F-phase increases up to 98% as ratio R = 4.
However, under high rate the deformation of molecular chain
appears to be sluggish because the segments have not been
aligned completely within limit time [45].

Dielectric property and energy storage of
nanocomposite

The dielectric property of stretching nanocomposite films
under the frequency from 107 to 10° Hz are illustrated in
figure 5. There is a significant improvement for the dielectric
constant of stretching nanocomposite compared with the
original sample. With the stretching ratio and rates increases,
the dielectric constant is enhanced and the maximum di-
electric constant &/ = 51.1 is achieved at R = 4 with the rate
of 50 mm min ', which is 2.1 times higher than ¢’ = 24.3 for
original nanocomposite film. When the uniaxial external force
is applied, the difference of stress distribution occurs between
the nanosheets and the polymer matrix, which affects the
molecular chain transition preferentially starting from the
adjacent to the nanosheets [17]. This phenomenon forms an
oriented inorganic-organic route consisting of structural units
that some macromolecular segments extend from the nano-
plates. This lateral path prevents carriers diffusing in the
direction of the electric field and depresses the flow efficiency
of charges, which contributes to the improvement of the di-
electric reliability [37]. The falling tendency of the stretching
film at frequency of 10°~10° Hz suggests the dominating
contribution of polarized dipoles under high frequency [46].

As shown in the figures 5(b) and (d), under low fre-
quency the dielectric loss &' of the stretching film is sig-
nificantly decreased, e.g. ¢” = 0.016 at 100 Hz. The loss rises
sharply as the frequency increases from 10* to 10° Hz, which
is induced by the orientation of C—F dipoles. The loss is a
critical factor for film capacitor, which is mainly induced by
the ferroelectric switching loss and electrical conduction of
polymer film. In some polymer composite systems, the loss
tangent is described as following formula [35]

/) . "
= €"con t €"inter T €"dipoles )
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where €”con, €"inter and €”gipote Tepresent loss resulting from
conduction, interfacial polarization and dipole polarization,
respectively. The interaction between nanosheets and matrix
is strengthened due to the presence of fluoropolymer and
phase transition starting from the periphery of the nanosheets.
The dipole polarization becomes the primary factor on the
overall dielectric loss [47]. Besides, the optimum stretching
improvement leads to high orientation and packing density of
macromolecular segments.

The set of unipolar hysteresis displacement loops versus
electric field (P—E) at 250 MV m " for typical nanocomposite
films with various stretching conditions are displayed in
figures 6(a) and (b). The electric displacement is improved
after the stretching process, which is mainly attributed to the

large content of the electroactive phase and the interfacial
interaction. The detailed hysteresis loops as a function of
electric field for stretching films are shown in figure S2. To
examine quantitatively the improvement of electric displace-
ment, the extracted maximum polarizations (P,.x) are plotted
in figures 6(c) and (d), in which a significant leap in P,y is
observed when the rate is increased from 10 to 20 mm min .
This phenomenon also supports the dominance of dipole
polarization. Due to the influence of entropy, the slow
stretching speed induces the macromolecular segments
around the nanosheets to be a transition state that tends to
recover and introduce some defects in the nanocomposite
film. The macromolecular chain in the conversed (-phase
cannot escape from the amorphous region. As the deforma-
tion progresses, it is like a knotted yarn ball becomes tighter,
and eventually leads to incomplete polarization under the high
field [48].

The breakdown strength of stretching BNNSs/P(VDF-
CTFE) nanocomposite could be dissected by a two-parameter
Weibull equation [8, 14, 49]:

P(E) =1 — exp(—(E/Ep)"), 3

where P(E) is the cumulative probability of electrical failure,
E the experimental electric field strength, E, a typical strength
with probability of breakdown as 63.2%, and shape parameter
m is related to the linear regressive fit of the distribution,
which could evaluate the dielectric reliability. The fitted lines
of the typical samples are presented in figure 6(e) with the
inset corresponding E,, and m values. The high m value after
deformation indicates that the film retains graceful dielectric
reliability and the stretching process does not impair the
compatibility between the nanosheets and P(VDF-CTFE)
matrix due to the attachment of fluoropolymer. The break-
down possibility of nanocomposite versus applied electric
field is calculated inset figure 6(e). The inflection points of the
stretching films are centered at ~250 MV m™', which is
higher than that of the original film of ~150 MV m~'. The
Weibull breakdown strength E}, is extracted separately and
plotted in figure 6(f) for an intuitive comparison. The Ej, value
of the stretching film generally increases and reaches max-
imum of 291.8 MV m ™', 84.9% higher than that of the ori-
ginal film, which is mainly ascribed to the inhibition of
electrical treeing by the rearranged nanosheets in the nano-
composite [26]. The cross-sectional morphology by SEM
image in figure S3 shows no obvious crack in stretching film.
During mechanical improvement, the BNNSs are redis-
tributed as parallel array perpendicular to the electric field
along with the orientation of the macromolecular chains,
which prevents the extension of the electrical branches. In
addition, the few-layer nanosheets obtained by liquid exfo-
liation have low lattice defects, and the surface-adsorbed
fluoropolymer improves the compatibility with the matrix,
thus the electrical trees are difficult to bypass the BNNSs [33].

The discharged energy density of BNNSs/P(VDF-
CTFE) nanocomposite film is estimated from the P-E loop by
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the following formula:

U. = f EdD, (4)
where D and E are the corresponding polarization and applied
external field, respectively. The released energy density and
charge—discharge efficiency of BNNSs/P(VDF-CTFE)
nanocomposite films are shown in figure 7. The stretching
nanocomposite film with 50 mm min ' at R = 4 exhibits the
highest energy density U, = 7.0Jcm > with charge—dis-
charge efficiency 7 = 56.1% at 250 MV m™'. The effect of
stretching rate on the discharged energy density of nano-
composite film is plotted in figure 7(c). Under high stretching
rate the extreme speed induces the electroactive phase to be
tightly wrapped by the molecular chain that undergoes phase
transformation, leading to insufficient dipole polarization
accompanied by great friction. The electric field is similar to a
force that initiates dipole rotation. The low field strength
mainly enables the §-phase to prevail the surrounding barrier.

When the electric field strength reaches a certain value, the
loss induced by the relatively free rotation of the dipole
becomes the domination effect [50]. The comparison of
electrical capability of stretching BNNSs/P(VDF-CTFE)
developed in this study and selected reported PVDF-based
nanocomposites is listed in table 2. The stretching nano-
composite film exhibits relatively high energy density and
charge—discharge efficiency, which is primary for the energy
storage device where the weight and the occupation are
mainly concerned.

In order to clarify the effect of the aligned BNNSs on the
diffusion of electrical treeing, the field distribution model of
vertical cross-section sample is established by finite element
simulation. As presented in figures 8(a) and (b), the applied
voltage on the sample with thickness of 20 ym is 3000 V as
illustrated in electrical potential distribution in figure S4. Here
we set the dielectric constant of BNNSs and P(VDF-CTFE) as
5 and 13, respectively, and the electrical conductivity is
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Table 2. Comparison of electrical energy storage in PVDF-based nanocomposites developed here with those in the literature.

e e’ AE
Samples (1 kHz) (1 kHz) MVm Y U. Jem ™) n (%) References
Stretching 0.5 vol% BNNSs/P(VDF-CTFE) (50 mm min "' 49 0.03 250 7.0 56.1 This work
atR =4)
1 vol% TiO,-g-PMMA /P(VDF-HFP) 10 0.03 500 10.8 47 [51]
10 vol% PZT/PVDF 12 0.03 250 6.4 40 [52]
0.02 wt% Au nanorods/P(VDF-CTFE) 8.8 — 230 4.6 62.2 [53]
3 vol% NaNbO; @PDA @Ag nanowires/PVDF 10 0.025 485 16 62.8 [54]
3 vol% BT nanofibers/P(VDF-HFP) 18 0.07 300 8.6 57 [55]
5 wt% BT/6 wt% BNNSs/c-PVDF 10.8 0.05 425 52 50 [27]
0.1 vol% Graphene/P(VDF-CTFE) 18.2 0.04 250 4.6 62 [56]
2.5 vol% Nd-doped BT /PVDF 16.5 0.05 350 7.9 40 [57]
5 wt% BT@BN/PVDF 11.5 0.03 250 3.6 87 [58]
0.5mol 17! TiO, nanowire array /PVDF 15 0.03 505 8.9 — [59]
12 vol% methacrylate-butadiene-styrene /PVDF 8.1 0.02 535 9.8 — [60]
3.6 vol% BT @Al,O; nanofibers/PVDF 13 0.02 420 11.5 62.5 [61]

assigned to 1077 Sm™" for BNNSs and 10°"*Sm™' for
matrix in this simulation. It is observed that the partial voltage
is accumulated on the nanosheets, which preferentially
spreads to the edges of nanoplates. Compared with the
homogeneous nanocomposite film, the local field extends
along the orientation direction of the nanosheets in the
stretching nanocomposite, which implies that the BNNSs
array perpendicular to the applied field direction guides the
lateral propagation of the electrical treeing, which is illu-
strated schematically in figure 8(c). Similarly, the field
strength in the middle of parallel nanoplates is higher than
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that of nanocomposite with isotropic dispersion because of
the head-on collision effect between the electrical branches
and the oriented nanosheets. The simulation results are con-
sistent with the experimental data, which further confirms that
the oriented nanosheets block the diffusion of charge carriers
and improve the resistance of electrical treeing inception [26].

The electric field is re-allocated in the aligned nanosh-
eets/polymer nanocomposite based on the difference of di-
electric property and the continuity of electric displacement at
the adjacent interfacial region. The term breakdown is
employed to describe a dynamic transfer when the current
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nanosheets in pre-stretched film, (b) aligned nanosheets in stretching film, and (c) schematic view of electrical treeing growth in
nanocomposite film before and after stretching. The thickness of the film is 20 um, and the applied electrical voltage is 3000 V.

increases dramatically with small voltage variation. The
breakdown failure occurs in the polymer insulator is usually
very fast, and it is destructive that makes irreversible effects
in the material. Compared with the intrinsic breakdown, in
practical case, the engineering breakdown is determined by
the polymer morphology, chemical impurities, and defects in
the film. Under high field the collision between the hot
electrons with trapped electrons leads to avalanche or impact-
ionization breakdown [18]. The distribution of nanosheets is
proposed as an important factor to determine the efficiency of
transportation for charge carriers. The anisotropic composite
has been evidenced as an effective strategy to reduce the
nonlinear conduction, which is a dominate loss mechanism
under high field, and retains the dielectric breakdown strength
in the heterogeneous system [22]. The orientation of
nanosheets contributes to the prolonged path distance, in
which the tortuous path depends on the layer aggregation and
alignment of nanofillers. The electron trapping sites with a
range of barriers for electron transfer are redistributed
perpendicular to the external field direction. When the applied
field reaches a critical value to accelerate carriers flowing
towards the adjacent trapping that is perpendicular to the field
direction, which increases the path of electrical branches and
thus, improves the dielectric reliability. The space charge
conduction and the accumulation of local field are associated
with the anisotropic state of nanosheets in the polymer
dielectrics. The alignment of nanosheets in nanocomposite
sheds a light on mechanism of electrical breakdown, and
paves the path to the high energy density and charge—dis-
charge efficiency of polymer nanocomposite for flexible film
capacitor.

11

Conclusions

In summary, BNNSs/P(VDF-CTFE) nanocomposite film
with high dielectric property and electrical energy capability
has been prepared by uniaxial stretching improvement. The
BNNSs was exfoliated with assistance of HBPE-g-PTFEMA
as polymer stabilizer, which was adsorbed on the surface of
nanosheets via CH-7 non-covalent interaction. The presence
of fluoro copolymer enhances the compatibility between
nanosheets and polymer matrix. The orientation of macro-
molecular segments simultaneously drives the BNNSs to be
distributed in a direction parallel to the force, which would
block the development of the electrical treeing under high
field. The released energy density of stretching nanocompo-
site film reaches 7.0 Jcm > at 250 MV mfl, which benefits
from large content of electroactive phase and interfacial
polarization. This work establishes a feasible strategy to
improve the compatibility in oriented nanosheets/polymer
nanocomposite with high electrical energy capability for
flexible film capacitors.
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