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A B S T R A C T   

Skin-mounted microfluidics devices have shown distinct advantages in sweat collection and analysis platform 
due to their multiple sweat treatment including sample collection, flow control, storage, analysis and expelling 
by special design in microfluidic networks. However, the fabrication of most reported wearable microfluidic 
devices with mechanical flexibility and elasticity mainly rely on soft-lithography technology whose imple-
mentation is limited by necessitating access to resource-intensive laboratory and costly facilities. Herein, we 
propose an accessible, low-cost fabrication and integration scheme, which renders flexible microfluidic archi-
tecture capable of performing reliable sweat collection and sensing. We utilize low-cost 3D-printing technology 
to rapidly yield positive mold of facile printable material (malt syrup) for personalized customization of 
microfluidic channels. An ingenious approach is also proposed to encapsulate microfluidic channel layer and 
integrate pH sweat sensor into the microfluidic device for dependable sweat collection and pH analysis. The 
proposed fabrication strategy of flexible and stretchable epidermal microfluidic sensor represents a low cost, 
reachable alternative to recently prevailing soft-lithography method, and hence significantly reduces the 
threshold of microfluidic development and manufacture.   

1. Introduction 

Emerging wearable bioanalytical devices provide a convenient 
manner and insightful perspective for monitoring and diagnostics of 
human health and fitness by accessing to biofluids and quantifying the 
level of biomarkers simultaneously [1–3]. Sweat is a feasible and ideal 
biofluid for monitoring the individual physiological status and assessing 
human health and fitness as it can be accessed noninvasively on surface 
of the skin and contains diverse biomarker from metabolites, amino 
acids, electrolytes to metal ions, proteins, and hormones [4–8]. Much 
researches indicate that the level of biomarker in sweat can reflect the 
health of the body [9–16]. Compared to patch- [17,18], tattoo- [19–21], 
and bandage- [9,11,22] wearable sweat analysis platform, epidermal 
microfluidic device can not only collect and analyze sweat, but also 
render controllable sweat flow and avert the mixture of has-been-tested 
sweat and to-be-tested sweat, which makes it an attractive sweat anal-
ysis platform [23–27]. The majority of reported epidermal microfluidic 

device based on polydimethylsiloxane (PDMS) is fabricated by 
soft-lithography method, where mold fabrication requires UV lithog-
raphy machine in cleanroom by multi-step and time-consuming opera-
tions and every mold structure is immobilized by the design of each 
corresponding mask plate. These raise the threshold of microfluidic 
manufacturing and related technology research. 

The Fused Deposition Modeling (FDM) 3D-printing is a potential 
low-cost fabrication technique for elastomer-based microfluidic devices 
[28–31]. Thermoplastics which include acrylonitrile butadiene styrene 
(ABS), polylactice acid (PLA), high-impact polystyrene (HIPS), nylon, 
poly(lactic-co-glycolic acid) (PLGA), poly(vinyl alcohol) (PVA), and 
high-density polyethylene (HDPE) are commonly used as 3D printing 
materials in the FDM technology. Most thermoplastics usually need 
about 200 ◦C to be molten before printing operation [32–39] (Table S1). 
A certain amount of ultra-fine particles and volatile organic compounds 
are released from these thermoplastic materials during 3D printing 
processes [40,41], which will be adverse for human health. This puts 
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forward more stringent requirements for printing equipment on tem-
perature control, thermal insulation components, and ventilation and 
filtration modules. By comparison, sugar-based printing materials are 
environmentally friendly and have relatively lower melting temperature 
[42–45]. Thereinto, malt-syrup is a common sweetener with charac-
teristics of high viscosity and semi-solid at normal temperature (left of  
Fig. 1a), and can become facile flowability without high heating tem-
perature (about 80 ◦C). Therefore, it can be used to produce sugar 
painting, which is a traditional folk handicraft in China, and is created 
by pouring the heated malt syrup onto flattened plates manually by 
skilled painter. The sugar painting is vivid even if the size of its sugar 
filaments are not uniform (right of Fig. 1a). Inspired by this process, we 
print the filaments of malt syrup with precisely designed dimensions to 
prepare positive template for the fabrication of microfluidic channel via 
3D-printing technology (Fig. 1b). The significantly low printing tem-
perature (about 80 ◦C) can not only prevent oxidation or decomposition 
of the printing material during the heating process, but also reduce the 
difficulties of temperature control and thermal insulation of the 
3D-printing device. In order to construct the skin-mounted microfluidics 
device for sweat collection and pH analysis, we propose a two-step 
operation for microchannel encapsulation and sensor integration via a 
thin uncured PDMS membrane (obtained by high-speed spin coating) as 
PDMS-based intermediate adhesive (PIA) with the assistance of 
double-sided tape (Fig. 1c-d). This two-step integration method is 
environmentally friendly, convenient and low-cost, without high tem-
perature, corona discharge, surface treatment reagent or plasma treat-
ments as used in traditional bonding methods [46–56] (Table S2). In 
vitro and skin-mounted experiment of microfluidic sweat sensor dem-
onstrates the validity of our low-cost fabrication and scheme capable of 
reliably harvesting and analyzing sweat. 

2. Material and methods 

2.1. Fabrication and encapsulation of flexible microfluidic channels 

A Masking tape (Youbisheng Adhesive tape, Hangzhou Co. LTD, 
China) was first adhered to a cleaned glass slide and cut into arcuate 
shape by laser cutter (ultraviolet laser marking machine-3 W, Shenzhen 
Chaoyue laser Intelligent Equipment Co., Ltd., China; Fig. 2a). Malt 
syrup (Qichun Tianli Bioengineering Co., Ltd, China) was used to print a 
set of sugar filaments on the glass slide by using the 3D-printing 

technology with the heating temperature of extruder in 80 ◦C, printing 
velocity in 5.8 mm s− 1, and printing distance in 400 µm. It should make 
sure that printing path passed through the arcuate tape (Fig. 2b). After 
printing filaments, the arcuate tape was peeled off to remove the fila-
ments on the tape such that the remaining filaments reserved the 
structure with three endpoints which would respectively align with 
three inlet holes (Fig. 2c). Then, we hardened the filaments by baking 
them in an oven at 50 ◦C for 30 min to obtain the final positive mold. 
PDMS (mixing ratio of base to curing agent: 10:1 by weight) was poured 
onto the positive mold, followed by curing it in an oven at 60 ◦C for 4 h, 
and peeling off it from the glass slide to obtain microchannel layer with a 
thickness of 700 µm (Fig. 2d-f). By controlling the printing velocities of 
malt syrup (16.7 mm s− 1, 12.5 mm s− 1, 8.3 mm s− 1, 5.8 mm s− 1, 
3.3 mm s− 1, and 1.7 mm s− 1, respectively), and the printing distances 
(0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm, respectively), sugar 
filaments and PDMS microchannels with different dimensions were 
obtained. 

After that, a drop of uncrosslinked PDMS (mixing ratio of base to 
curing agent: 10:1 by weight) was dropped on a PDMS cover (250 µm), 
followed by spin-coating the uncrosslinked PDMS at 8000 r/min for 50 s 
to obtain a thin uncrosslinked PDMS membrane (about 2 µm in thick-
ness), which was served as PIA to encapsulate microchannel layer by 
bonding microchannel layer and PDMS cover (Fig. 2g). Three inlet holes 
were drilled in PDMS cover by a punching pin with diameter of 2.5 mm. 
After covering the microchannel with the PDMS cover, the device was 
put into an oven with 60 ◦C for 2 h to cure the PIA and obtain the 
encapsulated microchannels. 

2.2. Fabrication and integration of pH sensor in the microfluidic devices 

The pH sensor was a two-electrode system. First, a cleaned poly-
ethylene terephthalate (PET) narrow strip (12 µm in thickness, 8 mm in 
width) was covered by an electrode mask, and two 30-nm Ti/50-nm Au 
electrodes with 0.8 mm width and 1 mm distance were deposited on the 
PET surface by magnetron sputtering. Then one of the Ti/Au electrodes 
was activated by cyclic voltammetry (CV) from − 0.2–1.6 V versus a 
commercial Ag/AgCl reference electrode for 10 circles at a scan rate of 
0.1 V/s in the aqueous solution containing 0.5 M sulfuric. After that, a 
polyaniline (PANI, purchased from Aladdin Industrial Corporation, 
China) film was electrochemically polymerized on the activated Ti/Au 
electrode via CV from − 0.2–1.0 V versus Ag/AgCl electrode at a scan 

Fig. 1. The fabrication and integration scheme of 3D-printing flexible microfluidic platform for sweat pH sensing. (a) Malt syrup with high viscosity in room 
temperature (left), and sugar painting made of malt syrup (right). (b) Diagram of 3D printing sugar filament (left), and the printed sugar filament (right). (c) The 
assembled microfluidic sweat sensor. (d) Exploded view of microfluidic sweat sensor. 
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rate of 0.1 V/s in the solution containing 0.1 M aniline and 1 M HCl, 
obtaining the Ti/Au/PANI working electrode on the PET substrate. For 
the reference electrode preparation, the other Ti/Au electrode was 
screen-printed Ag/AgCl ink (Shanghai Julong Electronic Technology 
Co., Ltd, China) and dried under 4 ◦C without light, followed by the 
modification with a mixture solution including 79.1 mg Polyvinyl 
butyral (PVB, purchased from Aladdin Industrial Corporation, China), 
50 mg NaCl, and 2 mg poly(ethylene glycol)-block-poly(propylene gly-
col)- block-poly(ethylene glycol) (F127, purchased from Aladdin In-
dustrial Corporation, China) in 1 mL methanol. 

In order to integrate the pH sensor in the microfluidic device, a stripe 
of double-sided tape (9495LE 300LSE, 3 M, USA) with three oval holes 
and a circular hole with 4-mm diameter was pasted on the microchannel 
layer with the assistance of PIA which was prepared by spin-coating at 
8000 r/min for 50 s (Fig. 2h) and cured at 60 ◦C for 2 h. Then the PET 
stripe with pH sensor was adhered to the double-sided tape and the 
sensor layer with a PDMS-based top capping was encapsulated with the 
assistance of PIA (Fig. 2i-j). In all the adhesion operations, the alignment 
of holes with sensor was critical. 

2.3. Characterization of the microchannel samples and pH sensors 

The sections of microchannels with different dimensions were 
characterized by scanning electron microscopy (SEM, Hitachi S4800, 
Japan). The bonding strength of different interfaces in the microfluidic 
device with integrated senor were characterized via T-type peeling test 
on Digital Variable-Speed Motorized Test Stands (MX-U350, Jiangsu 
Moxin Industrial System Co., Ltd, China) with test sample width of 
13 mm and peeling rate of 10 mm min− 1. The fabrication methods of the 
test interfaces were as follow. Bond two cured PDMS strips with the aid 
of PIA to form Interface 1. Bond double-sided tape onto PDMS strip with 
the aid of PIA to form Interface 2. Stick PET film onto double-sided tape 
to form Interface 3. Stick PDMS strip onto double sided tape directly to 
form Interface 0, which was served as a control group. 

The properties of the individual pH sensor, including pH sensing 
behavior, repeatability, long-term stability, temperature dependency, 
and selectivity were tested in the Britton-Robison buffer solutions with 
different pH levels (4.1, 5.0, 6.0, 7.0, 7.7, 8.8), which were prepared by 
adding 0.2 M NaOH solution with varying volumes into 0.04 M mixed 

acid of phosphoric acid, boric acid and acetic acid of 100 mL. The pH 
sensor readout was recorded by electrochemical workstation (CHI 660E, 
Shanghai Chenhua Instrument Co., Ltd, China) in each test. The stability 
of the pH sensor was demonstrated by potential drift test in one hour in 
the solution with pH levels of 4.1, 7.0, 8.8. The selectivity test of pH 
sensor was carried out by subsequently adding possible interfering 
electrolytes (1 mM Ca2+, 1 mM Mg2+, 5 mM K+, 20 mM Na+,) and 
Britton-Robison buffer solution of pH 7.0 into a Britton-Robison buffer 
solution of pH 6.0. The temperature dependency of the sensor was 
evaluated from 15◦ to 30◦C with the interval of 5 ◦C in Britton-Robison 
buffer solution with the pH level of 4.1, 7.0, and 8.8, respectively. 

2.4. In-vitro and on-body electrochemical characterization of microfluidic 
device with integrated sensor 

The in-vitro electrochemical characterization of microfluidic device 
with integrated pH sensor was performed by flow injection analysis. A 
syringe pump (LSP01–3A, Baoding Lange constant flow pump Co., Ltd, 
China) was used to pump the test solution into the microfluidic device 
from the outlet of microfluidic device where one end of an amputated 
syringe needle was inserted into the microchannel and the other end was 
inserted into a flexible tube. The flexible tube was connected to the 
syringe. The test solution flowed out of device from one of the inlets, 
while the other two inlets was sealed by adhesive tape (Fig. S1). The 
repeatability of the microfluidic device with integrated pH sensor in 
flow injection test was carried out at a flow rate of 10 μL/min with 
varying pH levels (4.1, 5.0, 6.1, and 7.0). The outputs of the sensor were 
recorded by electrochemical workstation. The effect of flow rate of test 
solution on the output behavior of the sensor was investigated with three 
different injection flow rates (10, 17, and 33 μL⋅min− 1). The response of 
the device under various deformations, including bending, stretching, 
and twisting was also recorded when the test solution was injected into 
the microfluidic device to fill the sensing chamber. 

The on-body sweat test analysis was implemented on two healthy 
young volunteers. Each volunteer had been given full, informed consent 
before participating in the test. The microfluidic device was adhered to 
volunteers’ forehead by double-sided tape (9495LE 300LSE, 3 M, USA) 
after the skin at adhesion site was cleaned with alcohol to dispel ash and 
grease. In sweat collection test, sweat was induced by continuous 

Fig. 2. Fabrication procedure of the micro-
fluidic sweat sensor which can be divided into 
three main steps: (a)-(c) preparation of positive 
template, (d)-(g) preparation and encapsulation 
of microfluidic channel, (h)-(j) integration of 
sensor into microfluidic channel. The details are 
as follows. (a) Arc shaped removable tape was 
fabricated on a glass slide by laser cutting. (b) 
Filaments were printed on the glass slide and a 
section of arc shaped filament was printed on 
the arc shaped tape. (c) Filaments on the tape 
was removed by peeling off the tape, thus the 
microchannel network with four endpoints was 
obtained. Three endpoints were used as inlets of 
sweat, and the fourth one was used as an outlet. 
(d) The PDMS was casted on positive mold and 
cured. (e) The cured PDMS was peeled off to (f) 
obtain microchannel layer. (g) Convenient 
encapsulation of microchannel layer was ach-
ieved by the following two steps: (g1) spinning 
coating uncrosslinked PDMS on a PDMS cover 
to form a thin uncrosslinked PDMS film served 
as PIA, then punching three holes as inlets of 
the microfluidic chip, (g2) encapsulating the 
microchannel layer with the PIA coated PDMS 
cover. After PIA was cured, the encapsulation of 

microchannel layer was finished. Integrating sensor into microfluidic chip by the follow three steps: (h) pasting double-sided tape on microchannel layer with the 
assistance of PIA, (i) pasting sensing layer on double-sided tape, (j) encapsulating the sensing layer with a PDMS-based top capping with assistance of PIA.   
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outdoor running for one of volunteers and being exposed to hot indoor 
(33 ◦C) for the other volunteer. The sweat collection process was tracked 
and recorded by a camera. In on-body sweat pH test, sweat was induced 
by being exposed to hot indoor (33 ◦C), and during the process a volume 
of warm water was intake to maintain water balance in the body, and the 
outputs of the sensor were recorded by the electrochemical workstation. 

3. Results and discussion 

3.1. Quantitative size analysis of microfluidic channel obtained from 
sugar filament mold fabricated by precision-controlled 3D-printing 
technology 

The 3D-printing system consists of five subsystems, namely 3D mo-
tion platform, sugar extruder, temperature control system, pneumatic 
control system and computer (Fig. S2). Malt syrup in extruder is 
squeezed out of printing nozzle (510 µm in internal diameter) by pres-
sured gas (70 psi), meanwhile printing nozzle driven by 3D motion 
platform moves according to the predefined printing path in printing 
control software. Thus the squeezed sugar filaments are written on glass 
slide to create patterned structures (Fig. 1b and Fig. S3). However, the 
malt syrup fails to squeeze out of printing nozzle at normal temperature 
because of its high viscosity. Therefore, the malt syrup needs to be 
heated to 80 ◦C by temperature control system to enhance its liquidity. 
After the printed filament on glass slide are dried at 50 ◦C for 30 min to 
evaporate water and harden the filament, we can obtain positive mold. 
The hardened mold can keep performance stable for at least 2 months in 
an oven even the oven temperature rises to 70 ◦C. Then PDMS is casted 
on glass slide to cover the positive mold then cured at 60 ◦C for 4 h, and 
the microchannel is obtained after peeling off the cured PDMS from glass 
slide. The positive molds can still remain solid in the general ambient 
humidity (relative humidity 70–80% at 25 ◦C) at least 5 days and can be 
used repeatedly. 

In order to precisely design and control the sugar filament dimen-

sion, we built a 3D-printing model as shown in Fig. 3a. Flux of the sugar 
squeezed out of the nozzle (denoted as Q) and translational speed of the 
nozzle (denoted as v) determine the filament dimension, and Q can be 
expressed by 

Q = Sv, (1)  

where S is section area of filament. Ignoring the effect of gravity, the 
shape of filament section is circular. Thus, the nominal radius of fila-
ments is 

r0 =

̅̅̅̅̅
Q
πv

√

. (2) 

The impact factors of Q include air pressure, temperature of malt 
syrup and internal diameter of nozzle, whose values are set to be 70 psi, 
80 ◦C, and 510 µm, respectively. Thus, Q is constant, and the dimension 
of filament is inversely proportional to square root of v in case of 
ignoring gravity. In practice, we find that the distance between bottom 
surface of nozzle and printing plane (denoted as H, as illustrated in 
Fig. 3a) affects the printing result. Specifically, the nozzle may fail to 
write an intact filament in case of abnormal large H, or compresses 
filament to flat structure in case of abnormal small H. To further study 
the impact of control parameters on filament dimension, we prepared a 
set of microchannels under different v and H and obtained the section 
images of the microchannels. The SEM images show that the sections of 
microchannels are usually non-holonomic circle (Fig. S4) due to the 
combined effect of surface tension, gravity, and compression of nozzle. 
The surface tension renders filament ability to spontaneously form cy-
lindrical shape during the cooling process [44,45], while gravity and the 
compression of nozzle impel the section to non-holonomic circle. The 
compression even leads to serious deformation of sugar filament when H 
is much small (such as H=100 µm, Fig. S4). The microchannel dimen-
sion decreases with the increase of v for a given H (Fig. 3b and Fig. S5a). 
By analyzing the change of average microchannel widths and heights 
with different H as illustrated in Fig. 3c, we find that H has 

Fig. 3. (a) 3D-printing model of microchannel. 
(b) The relation of microchannel width and v in 
case of different H. (c) The change of average 
width and average height with H. HerehHis the 
average height of microchannels under a 
certain H, andwHis the average width of 
microchannels under a certain H, and hij is the 
height of microchannel in this case of H=Hi and 
v=vj, and wij is the width of microchannel in 
this case of H=Hi and v=vj. (d)-(g) The rela-
tionship between width of microchannel and 
the square root of v in case of different H. 
Discrete points are the average of experimental 
data (N = 3), with the error bars representing 
the standard diviation, and the smooth curves 
are the fitting results of inversely proportional 
function.   
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inconspicuous effect on microchannel dimension excluding abnormal 
small H. Similarly, Fig. S5b clearly reveals that v is the major factor to 
regulate filament and microchannel dimensions. 

The filament may go through stretching, self-heaping, or compres-
sion during the printing process. If the traveling distance of nozzle is 
larger than natural extrusion length of filament in unit time, the filament 
will be stretched, otherwise, the filament will be self-heaped. Besides, if 
the diameter of the filament is larger than H, the filament will be com-
pressed by bottom surface of nozzle. The deformation of the newly 
extruded filament can be divided into the following three cases. Case 1: 
2r0<H, namely, the filament will not be compressed by the bottom 
surface of nozzle. In this case, filament section usually inclines to be 
complete circle due to its surface tension and less effect of gravity. Case 
2: H< 2r0<R (R is the nozzle diameter, as illustrated in Fig. 3a), which 
means that the filament is still stretched but nominal diameter (2r0) of 
filament is greater than H. Thus the filament will be compressed by the 
bottom surface of nozzle, and its section will be non-holonomic circle. 
Case 3: 2r0>R, namely, the traveling distance of nozzle is less than 
natural extrusion length of filament in unit time. The new extruded 
filament will heap against the old one. In this case, the compression of 
nozzle and the effect of gravity impel the filament to be more non- 
holonomic circle. The three cases can be realized by regulating the v 
according to Eq. (2). In order to quantitatively analyze the relationship 
between microchannel dimension and v, we supposed that the section of 
microchannel is a part of a circle according to Fig. S4, and built the 
section model of microchannel (Fig. 3a), where r is the radius of 
microchannel, c is distance between the center of microchannel and 
printing plane, and θ is an inner angle of right triangle (0 < θ < π

2). The 
section area of microchannel can be written as 

S =

[(

π − arccos
c
r

)

+
c
r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(c

r

)2
√ ]

r2

= (π − θ + 0.5 sin 2θ)r2

. (3) 

Let 

λ = π − θ+ 0.5 sin 2θ, (4)  

we get 

r =

(
Q
λ

)0.5

v− 0.5. (5) 

As illustrated in Eq. (5), there is no strict inversely-proportional 
relationship between r and the square root of v because λ is variable. 
Considering the application of epidermal microfluidics, where the 
microchannel width is commonly designed between 200 µm and 
800 µm, the v should vary approximately from 3 to 12 mm s− 1 according 
to experimental experience. In this case we could obtain that λ− 0.5 varies 
in a small range of 0.57–0.73 (more details in Table S3 and related 
analysis). Therefore, the microchannel dimension is approximately 
inversely proportional to the square root of v in fabrication process of 
epidermal microfluidics. To demonstrate the inverse-proportion rela-
tionship, we used the experimental data of wij (j = 1, 2, …,5, corre-
sponding to v=1.67, 3.33, 5.83, 8.33, and 12.50 mm s− 1) to fit and 
obtain the inverse-proportion coefficient at the situation of each Hi (Hi 
=200 µm, 300 µm, 400 µm, and 500 µm), as illustrated in Fig. 3d–g. The 
fitting results show that the width of microchannel w and the square root 
of v can fit inversely proportional function well. This relationship can 
provide us guidance for the regulation of microchannel dimension. 

3.2. Interface characteristics of epidermal microfluidic device with 
integrated sweat pH sensor 

Fig. 1d illustrates the exploded view of the epidermal microfluidic 
device which consists of microchannel layer, microchannel encapsula-
tion layer, sensing layer, intermediary bonding layer (used to integrate 

sensing layer into the microfluidic chip), and top capping layer. When 
the device is bonded to the skin by a double-sided adhesive tape, sweat 
excreted from eccrine glands first accesses to the inlets and quickly fills 
them, then travels through microchannels into circular detection 
chamber in which pH sensor is integrated, and eventually flows out of 
detection chamber through microchannel upon filling the chamber 
(Fig. 1c). This process ensures the renewal of sweat in detection 
chamber. 

Conventional lithographical method for the fabrication of PDMS- 
based microfluidic devices depends on resource-intensive cleanroom 
procedures and fixed-design mask to create positive mold, and requires 
plasma etcher to encapsulate microfluidic devices. Here the fabrication 
and integration scheme based on the proposed 3D-printing technology is 
low-cost and flexible. The scheme consists of three main steps, namely 
printing of sugar filament mold, preparation and encapsulation of 
microfluidic channels, and pH sensor integration and system encapsu-
lation (Fig. 4a–c, more details in Fig. 2). For encapsulation of micro-
fluidic channels, PIA prepared by spin-coating uncrosslinked PDMS 
(8000r/min, 50 s) on a PDMS cover to form a thin membrane to bond 
microchannel layer and PDMS cover when PIA curing (Fig. 4e). The 
satisfactory adhesion between microchannel layer and PDMS cover is 
validated by the apparent rough traces after peeling off the bonded 
interface (Fig. S6). The robustness of this encapsulation method was 
proved by tensile test of the encapsulated microchannel with 30% ten-
sile for 100 cycles. The well-preserved microchannels after tensile test 
(Fig. S7) demonstrate the reliability of encapsulation scheme and pro-
vide an alternative to routine use of plasma treatment in microfluidic 
channel encapsulation. 

When a pH sensor was integrated into sweat collection reservoir to 
form a detection chamber, a double-sided tape was served as an inter-
mediary bonding layer to combine the microchannel layer and sensing 
layer, therefore double-sided tape was bonded onto the upper surface of 
microchannel layer and PIA was used to enhance the adhesion strength 
(Fig. 4e). Three different interfaces were formed in the process of 
microchannel encapsulation and sensor integration, as illustrated in 
Fig. 4e. The excellent adhesion strength of these interfaces was verified 
by a T-type peeling test. As shown in Fig. 4f, the adhesion strength of the 
bonding interface treated by PIA (Interface 1 and Interface 2) is signif-
icantly bigger than untreated one (Interface 0), which ensures reliable 
integration of the whole microfluidic device. The PDMS in elliptic holes 
also serves as PIA to clamp and fix the sensing layer after the PDMS is 
cured (Fig. 2h-j). When the microfluidic device with integrated sensor is 
stretched, the whole device becomes oval, while the detection chamber 
remained circular due to the non-stretchability of PET substrate 
(Fig. 4d), which implies the excellent adhesion strength of multiple 
interfaces. 

3.3. pH detection via epidermal microfluidic platform with integrated 
sweat pH sensor 

Analysis of sweat pH level is a significant matter as it can be used to 
characterize metabolic alkalosis [57], or to correct the pH-dependent 
deviation of sweat sensor such as enzyme-based glucose sensor [13] or 
sweat ionized calcium sensor [11]. The pH detection is achieved via the 
deprotonation and protonation process at the surface of PANI film, 
which leads to the change of Open Circuit Potential (OCP) versus 
reference electrode [11]. Fig. 5a illustrates the dynamic OCP responses 
of pH sensor to consecutive variation of pH level alternately from low to 
high and then from high to low. The rapid and consistent output of the 
pH sensor indicates good repeatability of the response in physiological 
relevant range of sweat pH. The corresponding linear calibration curve 
in pH range from 4 to 9 shows great linearity with a high resolution of 
60.8 mV pH− 1 (R-squared value of 0.999) and a near-Nernst behavior 
[2,58] (Fig. 5b). The stability test over an hour under three constant pH 
levels shows small potential drifts (ΔV) (Fig. 5c). Additionally, the pH 
sensor displays excellent selectivity to pH level of solution when exposed 
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to the possible interfering electrolytes in physiological relevant ranges 
(1 mM Ca2+, 1 mM Mg2+, 5 mM K+, 20 mM Na+). The output of the 
sensor slightly changes when the sensor is exposed to the solution con-
taining 20 mM Na+ (Fig. 5d). Besides, the output of the sensor is barely 
affected by temperature (Fig. 5e and Fig. S8a), and can keep stability in 
bending state of 45 degrees (Fig. S8b). Potential stability of reference 
electrode is also as important as the accuracy of working electrode for 
accurate measurement. Our testing indicates that the PVB-coated 
Ag/AgCl reference electrode (PVB electrode) can not only greatly 
eliminate the distraction from external chloride ions in the solution, and 
remains the potential stable with changeable pH level and environment 
temperature, but also keep wonderful long-term stabilities (Fig. S9). 
These characterizations above indicate that the pH sensor is reliable for 
accurate analysis of sweat pH level. 

The dynamic response of the pH sensor integrated in microfluidic 
device was also tested by injecting a set of buffer solutions with stepwise 
changing pH levels, and OCP of working electrode versus Ag/AgCl 

reference electrode was recorded by electrochemical workstation 
(Fig. 6a). Fig. 6b shows excellent repeatability of the pH sensor. The 
update time of the solution in detection chamber is affected by the in-
jection rate (Fig. 6c), and is approximately inversely proportional to the 
rate (Fig. S10), which is consistent with previously reported work [16]. 
Under various, repetitive mechanical deformations, including bending, 
stretching, and twisting, the OCP of pH sensor integrated in microfluidic 
device will emerge noises but it can quickly recover to previous level 
after removing these deformations. (Fig. 6d). 

In order to validate the ability of our scheme in term of on-body 
sweat collection and analysis, the microfluidic device without inte-
grating sensor was adhered to skin by double-sided tape (Fig. 7a). The 
sweat collection experiments involved two human subjects whose sweat 
was induced by continuous outdoor running (subject A) or being 
exposed to hot indoor heated with air conditioner (subject B) while the 
outdoor temperature was about 30 ◦C. To highlight the collected sweat 
in microchannel, a drop of dye solution (Sudan red) was carefully added 

Fig. 4. Illustration of microfluidic device fabrication and integration scheme. The scheme consists of three main steps, namely (a) printing positive mold of syrup 
filaments, (b) encapsulation of microfluidic channel, and (c) integration of senor into the microfluidic device. (d) Tension test of microfluidic device with integrated 
sensor. (e) The scheme of microchannel encapsulation and sensor integration. (f) Adhesion strength test of different interfaces. 

Fig. 5. OCP characterization of pH sensor 
measured versus Ag/AgCl reference electrode. 
(a) The OCP response of the sensor in the so-
lution with different pH levels (inset: composi-
tions of a reference electrode and pH sensing 
electrode). (b) The calibration curve of pH 
sensor (N = 4), with the error bars representing 
the standard diviation. (c) Stability of the 
sensor during one-hour continuous measure-
ment. (d) The selectivity test of the sensor to 
potential interfering substances in human 
sweat. (e) Temperature stability of the sensor 
tested in pH level of 4.1, 7.0, 8.8, respectively.   
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to each inlet of microfluidic sensor before the sensor was mounted onto 
the skin, then water was evaporated in room temperature to retain only 
the Sudan red dye. In sweat collection trial, the sweat in the inlets dis-
solved the dye and turned red in color. The devices could capture 
adequate sweat to fill reservoir without lateral leakage during outdoor 
running or sedentary state exposed to hot environments. In outdoor test, 
the time to fill the reservoir is approximate 13 min (Fig. 7b), while in 
indoor test，the time is about 20 min (Fig. 7c). Then, the microfluidic 
device with integrated pH sensor was adhered to two subjects’ forehead 
who were exposed to hot indoor (Fig. 7d). When sweat filled the 
detection chamber that can ensure consistent and stable output of pH 
sensor, the real-time, continuous signal output from pH sensor was 

acquired with electrochemical workstation. In order to verify the ac-
curacy of sweat pH measurement, the sweat was simultaneously 
collected manually and analyzed by commercial pH meter (Beijing 
shunkeda Technology Co., Ltd, China) during the measurements. The pH 
acquired from the microfluidic device fits well with the results acquired 
from commercial pH meter at these discrete sweat sampling points 
(Fig. 7e and f). The results of two individuals’ sweat pH analysis hint the 
utilization of the proposed scheme for fabrication of wearable sweat 
sensor. 

Fig. 6. Flow injection test in microfluidic device with integrated pH sensor. (a) Schematic of the flow injection test system. (b) Repeatability of the integrated sensor 
are tested under a pump rate of 10 μL⋅min− 1. (c) Response of pH stepwise changes at three different flow rates of 10, 17, and 33 μL⋅min− 1, respectively. (d) The 
responses of the integrated sensor under various, repetitive mechanical deformations. 

Fig. 7. On-Body sweat analysis of the integrated sensor. (a) The microfluidic chip is adhered to forehead for sweat collection. (b) Sweat collection during outdoor 
running or (c) sedentary state with exposured to hot environments indoor. (d) Depiction of on-body microfluidic device configuration adhered to the forehead of the 
subject. Real-time analysis results of sweat pH level of subject A (e) and subject B (f), and blue dots in the figures are the values of sweat pH level measured by a 
commercial pH meter. 
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4. Conclusion 

In conclusion, we reported a low-cost, 3D-printing fabrication and 
integration scheme of PDMS-based epidermal microfluidic device. In 
this scheme, malt syrup was used as printing material to produce posi-
tive mold. We found that the printing velocity is the key influence factor 
of microchannel dimension, whose square root is approximately 
inversely proportional to microchannel dimension in the application of 
epidermal microfluidics fabrication. Uncrosslinked PDMS was used as 
an adhesive to robustly encapsulate microfluidic channel layer and to 
integrate sensor into the microfluidic device, which was a good alter-
native to traditional bonding method of plasma treatment. In-vitro and 
on-body measurement demonstrated that the proposed 3D-printing 
scheme provided a reliable, low-cost path to fabricate epidermal 
microfluidic sweat sensor. Future studies would focus on developing 
fully integrated sweat patch with flexible circuits capable of in-situ 
readout and wireless transmitting analyzed data to mobile devices, 
and to develop simultaneous multiple parameters analysis on a single 
3D-printing microfluidic device. 
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