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Abstract: Sweat-rate measurement has received more and more attention, especially for specific
groups, such as athletes, soldiers and manual workers, due to their excessive sweat loss under
prolonged intense heat stress, which increases the risk of dehydration and electrolyte imbalance. The
highly effective manufacture of a sweat-sensing device is essential to its wide range of applications
in perspiration-related physiological information detection. In this work, we propose a simple and
cost-effective strategy for the manufacture of a microfluidic sweat-rate-sensing patch via laser cutting
and transfer printing technology. A copper foil tape is used as the electrode for in situ admittance
based sweat-rate-sensing. The detection circuits and measurement conditions are optimized to
prevent the negative effect of an electrochemical reaction between a copper electrode and sweat for
precise admittance measurement. In vitro and on-body experiments demonstrate that the copper
electrode is applicable for admittance-based sweat sensing and is capable of achieving equivalent
sensing accuracy as a gold electrode and that the proposed sensor structure can perform consecutive
and accurate sweat-rate-sensing and facilitates a significant increase in manufacturing efficiency.

Keywords: sweat rate; microfluidic patch; copper electrode; laser cutting; admittance

1. Introduction

Perspiration is a crucial role in the thermoregulation of the body. For specific groups,
such as athletes, soldiers and manual workers, excessive sweat loss under prolonged in-
tense heat stress may increase the risk of dehydration and electrolyte imbalance, which can
degrade individuals’ physical performances, compromise their physiological status, and
even develop into fatal heat-related illnesses [1,2]. Measurement of sweat rate is helpful
to provide a reasonable guidance for fluid intake [3,4] to ensure water and electrolyte
balance in vivo. Recently, colorimetric [5–10], volumetric [11,12], calorimetric [13], capaci-
tive [14,15], and impedance (or admittance) [16–21] sensing methods have been developed
for the in situ measurement of sweat rate, but several challenges remain, such as inconve-
nience in automatic monitoring [5–9,11], requiring precise alignment in the micromachining
process [13,16–18], and the required pre-calibration [17]. Besides, the vacuum-evaporated
gold electrode commonly used for sweat rates requires time-consuming, multistep microma-
chining processes and increases manufacturing costs accordingly. [16,17,20,22]. In contrast,
a copper electrode is a simple and low-cost alternative, especially in small-batch produc-
tion, and it has been used in water oxidation reaction and CO2 electroreduction [23,24].
However, when the copper electrode is immersed in sweat, the electrochemical reactions at
the Cu/sweat interface may occur and lead to the dissolution of the copper electrode [25] or
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the generation of bubbles, which will seriously affect the measurement accuracy. In order
to avoid the occurrence of electrochemical reactions, a non-contact measurement method
for sweat rate based on the copper capacitive sensor was designed, but only a weak output
signal could be obtained [14]. However, the acquisition of a strong, stable and veritable test
signal of sweat rate based on the copper electrode sweat sensing remains challenging.

Herein, we report a microfluidic patch with a copper electrode to measure the sweat
rate by calculating the increasing rate of the measured admittance of the electrode in
a microchannel when sweat advanced in the microchannel. The electrode admittance
was measured by detection circuits that were optimized to prevent the negative effect
of the electrochemical reaction in contacting admittance measurement, namely filtering
the DC component of the excitation signal passing through the sensor to avoid the DC
polarization of the electrodes, setting the highest frequency and the lowest amplitude of the
excitation signal to minimize the influence of the electrochemical reaction on admittance
measurement. Furthermore, the special structural design of electrodes in the microchannel
and the use of copper foil as electrode material enable the rapid manufacture of the entire
microfluidic patch using only laser cutting and rapid transfer printing technologies without
precise alignment operation, surface treatment or modification of electrodes. The proposed
easy-to-manufacture and low-cost microfluidic patch is capable of outputting a strong and
credible admittance signal. In vitro and on-body experiments together demonstrated the
validity of using copper electrodes and verified the accuracy of the proposed microfluidic
patch for sweat-rate measurement.

2. Materials and Methods
2.1. Structure Design of the Microfluidic Patch

The microfluidic patch for sweat-rate measurement consists of three parts, namely
detection area, calibration area (for sweat-rate calibration), and electrical interface, as
illustrated in Figure 1a. The detection area and calibration area are constituted by a stacking
microchannel layer and a copper electrode layer consisting of two pairs of parallel electrodes
(Figure 1b). Only a small part of each electrode is located inside the microchannel, and
every pair of the electrodes is separated by a distance of 200 µm (Figure 1a and Figure S1).
Two PET films encapsulate the electrode layer and the microchannel layer. The microfluidic
patch can be attached to the skin via a double-sided adhesive layer with a 5 mm hole for
dynamic sweat sampling (Figure 1b). Collected sweat first flows into the 7.5 mm calibration
area, then passes through it and enters the detection area. Newly-arrived sweat in the
detection area increases the electrode admittance whose increment rate depends on the
sweat rate and electrolyte concentration. The calibration area can decode the electrolyte
concentration that is used to calibrate the sweat rate measured from the admittance of the
detection area.

Based on the structure design above, the electrodes and microchannel can be con-
veniently fabricated by laser cutting, respectively following the corresponding cutting
tracks shown in Figure 1c. Thus there is no need to embed two parallel copper electrodes
into the microchannel by precise alignment operation, which can significantly improve
manufacturing efficiency and product consistency. The patch integrated with a flexible
printed circuit board (FPCB) can be easily mounted on the skin for in situ sweat collection
and detection (Figure 1d).

It is important to note that, for sweat-rate measurement devices, the additional flow
resistance of the device may affect the accuracy of sweat-rate detection. This is due to
sweat being generated at the secretion coil of the eccrine gland and transported to the skin
surface via the dermal duct and the upper coiled duct of the gland driven by secretory
pressure [26,27], and the flow resistance of the gland and the secretory pressure determine
the natural outflow rate of sweat from the sweat gland, which is the local sweat rate to
be measured. However, a microfluidic sweat collection device inevitably increases the
flow resistance in the sweat transport path. If the external flow resistance is large enough
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to be close to the sweat gland’s flow resistance, the sweat collection device will produce
significant effect on the natural outflow rate of sweat from the sweat gland.
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Figure 1. Design of microfluidic patch for sweat-rate sensing. (a) Structure of the microfluidic patch.
(b) Exploded view of the patch. (c) Cutting tracks of microchannel and electrode. (d) Photograph of
the patch integrated with FPCB mounted on the skin.

The flow of sweat in the microfluidic device is affected by both channel resistance
and capillary pressure. Due to the small size of the microchannel, the microfluidic device
may produce a considerable flow hindrance effect on sweat. In order to research the
comprehensive impact of channel flow resistance and capillary pressure under a certain
size of the microchannel, we study the equivalent flow resistance of the microchannel and
obtain its formula as (more details refer to PART III of the Supplementary Materials):

Req =
PglandRc + ∆PσRgland

Pgland − ∆Pσ
(1)

where Pgland is the sweat-gland secretion pressure, ∆Pσ is the capillary pressure, Rc is the
flow resistance of the microchannel, and Rgland is the flow resistance of the gland.

In this work, the microchannel is produced by laser-cutting acrylic double-sided
tape and is packaged with PET film. The contact angle of sweat with the tape and the
PET film are 100◦ [28] and 80.5◦ [29], respectively. The study reported in Reference [14]
also used the same material for microchannel fabrication with a channel size of 90 µm
in height, 1 mm in width and 350 mm in length. The equivalent flow resistance they
provided was 4.6 kPa·s·mm−3, consistent with the value of 4.68 kPa·s·mm−3 calculated by
Formula (1), demonstrating the validity of Formula (1). For the channel size in this work
(300 µm in height, 1 mm in width and 105 mm in length), the equivalent flow resistance
of the microchannel is 0.31 kPa·s·mm−3, far less than the flow resistance of the gland
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(410 kPa·s·mm−3), so the designed microchannel device has little effect on the natural
sweat secretion rate and sweat rate.

2.2. Principle of Admittance-Based Sweat-Rate Measurement via the Microfluidic Patch

Sweat contains a large amount of electrolytes, such as Na+, Cl− and K+, which endow
sweat with certain conductivity. When a certain volume of sweat fills the detection area
of length dl during the time from t to t + dt (Figure 2a), sweat and electrodes in this area
of length dl will form a microcell whose equivalent circuit model is shown as Figure 2b,
where Cd and Rct represent the double-layer capacitance and charge-transfer resistance at
the interface of the sweat-electrode, respectively. Rs is the solution resistance, and C0 is the
distributed capacitance between two parallel electrodes.
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Figure 2. (a) Electrode admittance analysis model of sweat–electrode microsystem. (b) The equivalent
circuit model of the microcell composed of electrodes and micro-sweat of length dl.

The equivalent circuit in Figure 2b can be further simplified as the admittance dY.
Considering that flowing sweat in the microchannel can be regarded as a series of parallel
admittances between two electrodes (Figure 2a), the electrode admittance increases with
the increase in sweat volume in the microchannel. Furthermore, dY is related to the sweat
electrolyte concentration, so the flow rate of sweat in the microchannel can be calculated by
the formula:

Qi =
K
ci
·

Yi −Yj

ti − tj
(2)

where ci, and Yi are the sweat electrolyte concentration and the electrode admittance of the
detection area at moment ti, respectively, ti and tj are two adjacent sampling moments, and
coefficient K is determined by both the microchannel size and the layout of electrodes in
the channel. It is a constant for a specific sensor. The formula derivation refers to Part II of
the Supplementary Materials.

2.3. Fabrication of Microfluidic Patch

A UV laser-cutter machine (ultraviolet laser-cutting machine-3W, Shenzhen Chaoyue
Laser Intelligent Equipment Co., Ltd., ShenZhen, China) was used to fabricate all the
layers of the microfluidic patch. The fabrication method and process are shown in Fig-
ure 3. First, the microchannel was fabricated by laser-cutting double-sided tape (9495LE
300LSE, 3M, Saint Paul, MN, USA) pasted on a silicone sheet pre-fixed on a countertop
(Figure 3a) and then was peeled off the redundant area (Figure 3b). Then, copper foil
tape (double conductive copper foil tape, Shenzhen Baojiasheng Adhesive Tape Products
Factory, ShenZhen, China) was pasted onto the fixed microchannel layer and let its viscous
surface be exposed (Figure 3c). After that, the UV laser was applied to cut copper foil
along specific routes defined in the control software of the laser cutter machine (Figures
1c and 3d). After peeling off the removable copper foil, a centerline-gap appeared, which
divided the copper foil tape into two electrodes (Figure S1 and Figure 3d). Then a PET
film (12 µm in thickness) was pasted on the adhesive surface of the copper foil to form
strong interface adhesion between the PET film and the adhesive copper foil (Figure 3e).
Thus, the microchannel and electrode layer could be transfer-printed onto the PET film
by peeling them off together from the silicone sheet. With the help of the adhesion of the
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copper foil tape, the aligned electrode and microchannel could be rapidly transfer-printed
onto PET film without the thermal release tape or the water soluble tape, so it is efficient
and low-cost when compared to previously reported transfer-printing strategies [30,31].
At last, the microchannel was completely encapsulated with another PET film to form the
microchannel patch (Figure 3f). The prepared patch was further integrated with a FPCB for
in situ sweat-rate sensing (Figure 1d).
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Figure 3. Fabrication process of microfluidic patch for admittance-based sensing of sweat rate.

2.4. Building Experimental Testing System

The in vitro characterization of the sensing performance of the microfluidic patch was
carried out by a self-built injection analysis system as shown in Figure S2. In this system,
a test solution was pumped into the microfluidic device by a syringe pump (LSP01-3A,
Baoding Lange constant flow pump Co., Ltd., BaoDing, China). The injection scheme was
designed as shown in Figure 4a. The test solution was injected into the sensor via an injec-
tion microchannel that was connected using a syringe with an amputated syringe needle
and a flexible tube. Figure 4b shows the scheme for measuring the electrode admittance
and transmitting it to a computer. Electrode admittance measurement was performed by
AD5933-based circuits as shown in the dashed box, where a sinusoidal excitation signal
was produced by the AD5933 chip. To minimize the influence of electrochemical reaction
on admittance measurement, the highest frequency (100 kHz) and lowest amplitude (0.2 V)
of the sinusoidal signal was set. Electrode polarization is a severe problem for admittance
measurement, as it will generate microbubbles adsorbed on the electrode, which has a
serious effect on the measurement results. So capacitance C2 was used to filter the DC
component of the sinusoidal signal to avoid the DC polarization of the electrode. The de-
sign of the admittance measurement circuits in Figure 4b can completely avoid producing
microbubbles and perform accurate admittance measurement based on the copper elec-
trode. Detailed analysis about this is summarized in Part I of the Supplementary Materials.
The real-time measured electrode admittance was read out by a microcontroller hat was
integrated on a FPCB together with AD5933-based admittance measurement circuits. In an
in vitro characterization experiment, the acquired real-time admittance information was
transferred to a computer via a data-transfer circuit, while in the on-body trial, the informa-
tion was temporarily stored in the microcontroller and was transferred to the computer by
the data-transfer circuits after the sweat induction trial.
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3. Results and Discussion
3.1. Characterizing the Sensing Performance of Calibration Area

Since the sweat electrolyte concentration can affect the sweat-rate measurement, it
should be simultaneously measured to calibrate the sweat rate according to Formula (2).
In the calibration area, the model in Figure 2 can also be used to analyze the electrode
admittance, which is only determined by the sweat electrolyte concentration when sweat
completely saturates the electrode (referring to Part II of the Supplementary Materials). The
sensing performance of the calibration area to the electrolyte concentration was character-
ized when NaCl solutions with different concentrations were injected into this area at the
same rate of 2 µL·min−1. As displayed in Figure 5a, the measured electrode admittances
stayed constant in the same NaCl concentration and increased with the NaCl concentration
increasing. An approximate proportional relationship between the electrode admittance
and the NaCl solution concentration was obtained (Figure 5b), which demonstrates that
the conductance is dominant in the admittance measurement of the solution–electrode sys-
tem. This is the key reason why copper electrodes can perform the measurement of sweat
electrolyte concentration. X-ray diffraction (XRD) characterization was used to investigate
whether the copper electrode was corroded during the experiment. The three electrode
samples, respectively, were the untreated copper electrode, a copper electrode soaked in
NaCl solution for 1 hour and saved for 1 week, and the electrode taken from the microflu-
idic patch that was used for the on-body trial, respectively. The characterization results of
the XRD of the three copper electrodes are shown in Figure 5c, and the results reveal that
there is no production of new substances after soaking and on-body measurement. It is due
to that that the electrochemical transition between Cu atoms and Cu2+ is reversible and
periodical when the excitation signal applied to the electrode is high-frequency sinusoidal
AC voltage without the DC component. To further investigate the effect of copper ion
concentration on the sensing performance of the sensor, the admittance measurements
of 50 mM NaCl solutions with different copper ion concentrations were conducted, and
the results in Figure 5d indicate that the change in copper ion concentration within sweat
level has no significant effect on electrode admittance measurement, which benefits from
a very low excitation voltage amplitude (0.2 V) and high excitation frequency (100 kHz)
providing only weak drive force and short time for the electrochemical behavior of the
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copper ion. Besides, the copper ion level in sweat is very low (5–20 µM); therefore, very
weak electrochemical behavior exists. Then, the calibration area was tested in the solutions
with different types of cations but the same concentration of chloride ion, and the results in
Figure 5e reveal that the major cations in sweat have no effect on the admittance-sensing
performance of the calibration area. At last, five sensors in the same batch were used in the
calibration test, and the results indicate that the sensor based on ultraviolet laser cutting
has good reproducibility (Figure 5f).
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Figure 5. Sensing performance characterization of the calibration area. (a) Measured electrode admit-
tances in NaCl solutions with different concentrations. (b) The calibration curve of the calibration
area (N = 5), and the error bar represents standard deviation. (c) XRD characterization of copper
electrodes. (d) Measured electrode admittances in 50 mM NaCl solutions with different copper ion
concentrations (0.5, 10.0, and 20.0 µM). (e) Anti-interference performance of the calibration area.
(f) Reproducibility of the sensor.

Notice that chloride ions and bicarbonates are most abundant ions in sweat, while the
concentration of chloride ions is approximately 20 times greater than that of bicarbonates
in sweat [32]. Other sweat anions are derived mainly from the ionization of weak acids,
including uric acid, lactate and ascorbic acid. Their ionization constants are 5.1 × 10−6,
1.4 × 10−4 and 5.0 × 10−5, respectively. So the concentrations of corresponding anions
in sweat are far less than the chloride ion concentration due to their very low ionization
constants. Thus, sweat conductivity is approximately proportional to the chloride ion
concentration, just like in previous reports [21,33,34]. Therefore, for the on-body trial, the
measured electrode admittance in the calibration area can not only be used to calibrate the
measured sweat rate from the detection area, but it can also be converted to the sweat Cl−

concentration, which is also a critical parameter for the assessment of electrolyte balance
and the diagnosis of cystic fibrosis [35].

3.2. Characterizing the Sensing Performance of Detection Area for Sweat Rate Measurement

To characterize the sensing performance of the detection area for sweat rate measure-
ment, we first injected 50 mM NaCl test solutions into the detection area with different
injection rates, and the injections were paused for a period of time when the test solutions
arrived at a certain site in microchannels. During the pause, electrode admittances remained
constant, as illustrated at Platform I in Figure 6a. When the solutions completely filled the
microchannels, the admittance values were also unchanged, as illustrated at Platform II in
Figure 6a. The two platforms indicate that there was no zero drift of our sensors, implying
that the copper electrode can be used for sweat admittance measurement (more detailed
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analysis refers to Part I of the Supplementary Materials). Furthermore, the admittances
of sweat with the same volume were approximately equal, as illustrated in Platform I
and Platform II, demonstrating the reproducibility of the sensors. The change rates of
the admittance with time in Figure 6a were proportional to injection rates (Figure 6b).
This proportional relationship is consistent with Formula (2). As the experiments were
conducted under the same rate, we could deduce the coefficient K in Formula (2), namely
K = 50 mM/k′ =84.5 mM·µL·mS−1, where k′ is the slope of the fit curve in Figure 6b. Then
we could obtain the measured flow rate according to Formula (2), as shown in Figure 6c
and Figure S3. Then NaCl solutions with different concentrations were injected under the
same rate, and the measured admittance changes are shown in Figure 6d. The admittance
is approximately proportional to the solution concentration (Figure 6e), which validates
the correctness of Formula (2). Figure 6f and Figure S4 show the measured sweat rates
under different solution concentrations according to Formula (2). The experimental results
indicate that the detection area combined with the calibration area is capable of accurately
measuring the sweat rate.
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Figure 6. Characterizing the sensing performance of the detection area. (a) Measured electrode
admittances under different injection rates but the same concentration of test solution. (b) The
calibration curve between injection rate and the slope of increased admittance (N = 5), and the
error bar represents standard deviation. (c) Measured flow rate at an injection rate of 3 µL·min−1.
(d) Measured electrode admittances under different concentrations of test solutions but the same
injection rate. (e) The calibration curve between injection rate and electrode admittance when
microchannel was filled with test solution (N = 5), and the error bar represents standard deviation.
(f) Measured flow rate under 50 mM NaCl solution at the injection rate of 2 µL·min−1.

As the copper electrode is utilized and the sweat copper-ion concentration ranges
from 0.5 to 20 µM [32,36,37], it is necessary to investigate the influence of the copper ion
concentration within sweat on the measurement result. Three 50 mM NaCl solutions
containing different concentrations of copper ions were injected into the detection area,
and the injections were paused at the same site of the microchannel for the same time. The
results are displayed in Figure 7. The three curves almost overlap, which not only indicates
the change in copper ion concentration within sweat has a negligible impact on electrode
admittance measurement, but it also demonstrates the reproducibility of the sensor.
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3.3. On-Body Trial of the Sweat Rate via the Microfluidic Patch

In on-body trial, the trials were conducted on three subjects (subject I, subject II, and
subject III). The verification of the measurement accuracy of the sweat-rate sensor was
conducted on the forearm of subject I and the chest of subject II, and the regional variations
in sweat rate at different parts of the body was also studied on the chest, back, forearm, and
forehead of subject III. All subjects had been given informed consent before the trials. Sweat
induction was implemented by exposure to high temperatures for subject I and subject II
and being exposed to high temperature and performing stationary biking for subject III. The
real-time electrode admittances of the calibration area and the detection area were measured
and saved by the FPCB (Figure 8a). Image-based sweat-rate measurement was used to
verify the validity of the on-body sweat-rate measurement of the microfluidic patch during
the trials of subject I and subject II. In details, the real sweat volume in the microchannel
was acquired by recording the optical image of the dyed sweat. The sweat rate calculated
from the change rate of image-based sweat volume can be used as a reference to assess the
accuracy of the microfluidic sweat sensor, as in previously reported studies [5,14,16,38].
To highlight the captured sweat in the microchannel, a high-concentration dye solution
(sudan red solution) was dropped into the collection area of the microfluidic patch before
the patch adhered to the skin, then the water in solution was evaporated and only the
Sudan red dye was left at the collection area [39]. During the sweat-collection trial, the dye
will be redissolved and turn the sweat red in color. The optical images of the sweat in the
microchannel are shown in Figure 8b for subject I and Figure S5 for subject II.

During the trial on the forearm of subject I, sweat filled the calibration area at 23.5 min,
then the electrode admittance of this area could output the available sensing signal for the
quantification of the equivalent chloride ion concentration. The chloride ion concentration
measured from the calibration area is shown in Figure 8c, and it underwent a process
of increasing and then decreasing during the whole trial. Sweat entered the detection
area at 27.1 min, then the electrode admittance of this area was valid. For the trial on the
chest of subject II, the measured chloride ion concentration is shown in Figure 8e, which
increased slightly during the trial process. The sweat rate was calculated from the electrode
admittance of the detection area and the measured sweat chloride ion concentration,
according to Formula (2), and the result with the unit of µL·min−1·cm−2 is shown as the
solid red line in Figure 8d,f for the two subjects when the sweat-collection area is considered.
Besides, the referenced sweat rate could be obtained from the optical images of the dyed
sweat, as the blue dots in Figure 8d,f. The measured sweat rate from the admittance-based
method is consistent with the referenced one, demonstrating the validity of the on-body
measurement of the proposed sweat-rate sensor.
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Figure 8. Results of on-body trial. (a) Depiction of on-body microfluidic patch and FPCB configu-
ration mounted on the forearm of subject I during trial. (b) Photographs of sweat advancing in the
microfluidic patch and corresponding time required to fill microchannel during the trial of subject
I. (c) Measured sweat chloride ion concentration on the forearm of subject I from the admittance of
the calibration area. (d) Measured sweat rate on the forearm of subject I from the admittance-based
method and from the image-based method. (e) Measured sweat chloride ion concentration on the
chest of subject II from the admittance of the calibration area. (f) Measured sweat rate on the chest of
subject II from the admittance-based method and from the image-based method.

From the referenced sweat rate, it can be found that sweat rate increased for a period of
time after the onset of sweat induction, probably due to delayed perspiration from external
stimuli. This trend is analogous to previously reported studies using other measuring
approaches [13,14]. The change trend in the sweat rate is similar to that of the chloride ion,
implying some correlations between the sweat chloride ion concentration and the sweat
rate, which is consistent with previously reported studies [5,16,17]. This consistency may
be because there is more time to reabsorb chloride ions with a low sweat rate and less time
with a high sweat rate in the gland during the sweat secretion process [32].

In trials of different parts of the body of subject III, except for the forearm, all trials
ended when the microchannels were filled. The results are illustrated in Figure 9. The
sweat rate on his forearm is the lowest, while that on his chest is the highest. On the
chest, the sweat rate almost stayed constant during the whole trial process, but on the
other three parts, it declined especially in the second half of the trials. Comparing the
results of the four parts, the sweat chloride ion concentrations were more concentrated
at higher sweat rates, which is consistent with previous studies [17,40]. Furthermore,
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the change trend in sweat chloride ion is similar to that of the sweat rate. This trend is
similar to previous reports [17,20], which may be due to the secretion rate of chloride ion
in secretory coil of sweat glands increasing proportionally with the sweat rate, but it is
larger than the reabsorption rate in the proximal duct of sweat glands, so that a higher final
concentration of chloride ions is obtained at a greater sweat rate when sweat arrives at the
skin surface [41].
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Because the valid electrode admittance measured by FPCB only starts from sweat fill-
ing the calibration area or entering the detection area, there are delays for the measurements
of sweat chloride ions and the sweat rate. Future studies should focus on the optimization
of the structure of the microfluidic patch to reduce detection delay. Besides, the effective
detection time of the sweat rate is limited by the volume of the microchannel. Notice that
most studies indicate that the range of the sweat rate is generally ranges within 0.5 to
20 µL·min−1·cm−2 [5,9,12,13,15,16,42,43], as illustrated in Table S1. As the volume of the
detection area is 22 µL, the effective detection time of the sweat-rate sensor approximately
ranges from 5.5 min to 224.5 min for a 5 mm-diameter sweat-collection area in this work.
The detection time can be extended by increasing the channel length or channel height so
as to increase the volume of the microchannel.

4. Conclusions

To sum up, we proposed a simple, low-cost and easy-to-manufacture microfluidic
patch for admittance-based sweat-rate sensing. This patch can be rapidly manufactured
by only laser-cutting and transfer-printing, free of any surface treatment or modification
of the electrodes and without alignment operation. A copper electrode made of copper
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foil tape was used for the measurement of the sweat rate. We successfully solved the
potential interference problems of the copper electrode in admittance-based sweat-sensing
by filtering the DC component of the excitation signal of the sensor and optimizing the
frequency and amplitude of the signal. Compared with previously published studies, the
copper electrode is capable of achieving the same performance as the gold electrode in the
admittance-based measurement of sweat electrolyte concentration [17] and sweat rate [16].
However, under the condition of the same sensing performance, the proposed full-cut
manufacture and design scheme can provide an easy-to-manufacture and low-cost path to
fabricate a skin-interfaced sweat-rate sensor. Future studies will focus on improving the
flexible circuits to enable wireless transmitting the measured data to mobile devices and
optimizing the sensor structure to reduce detection delay.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13010067/s1, PART I: The feasibility of copper electrode for
admittance-based sensing of sweat rate [32,36,37]; PART II: Formula derivation of sweat rate [44];
PART III: Derivation process of the flow resistance of microchannel [7,45–47]; Part IV: Figure and table
supplementary for detailing the design and characterization of the proposed microfluidic sweat-rate
sensor; Figure S1: Layout of electrodes and centerline-gap in microchannel; Figure S2: Photograph of
the in vitro flow injection test system; Figure S3: Measured flow rate at injection rate of 0.75, 1.5 and
6.0 µL·min−1, respectively; Figure S4: Measured flow rate at the same injection rate of 2.0 µL·min−1

under three test solutions with different NaCl concentrations; Figure S5: Photographs of sweat
advancing in the microfluidic patch and corresponding time required to fill microchannel during
the trial of subject II; Figure S6: EIS Nyquist plot of the electrodes in calibration area in different
concentrations of chloride ion solutions; Table S1: The sweat rates in previously reported works.
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