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A B S T R A C T   

Somatosensory networks that provide sophisticated sensory feedback and enable the dexterous manipulation of 
the human grasp remain difficult to replicate in robots, which is attributed to the grand challenge of densely 
covering the hand with tactile arrays. Here, a multisensory tactile glove is reported that is capable of object 
recognition with dense coverage of pressure and temperature sensing arrays. The synergistic effect of the 
multimodal configuration allows the tactile arrays to perceive contact pressure and thermal conductivity of an 
object involved in grasping motion, thus enhancing the accuracy via the combination of the mechanical features 
with thermal properties. By leveraging the multiple scanning technology and wireless transmission system, the 
tactile glove achieves a recognition accuracy of 94.2% in differentiating 20 types of objects with a modified deep 
learning algorithm. The large-area sensing arrays with high spatiotemporal resolution and multimodal sensing 
capabilities, which paves the way for the development of robot grasping tools, human–machine interfacing, and 
advanced prosthetics.   

1. Introduction 

Skin-based mechanoreceptors and thermoreceptors provide delicate 
sensory feedback for achieving environment awareness, threats recog-
nition, and dexterous tasks [1,2]. Replicating the multimodal tactile 
perception capability in artificial skin enables the delicate manipulation 
of robotics and prosthetics, thus holding giant promise in human-
–machine interaction interfaces [3–7]. Although there has been signif-
icant progress in accumulatively understanding the underlying sensory 
mechanism and manufacturing technology [8–14], simultaneous 
implementation of precise mechanical and thermal sensing remains a 
daunting challenge yet. To realize object recognition with high accuracy 
in artificial tactile arrays, difficulties still exist in multifunctional inte-
gration, high spatiotemporal sensing resolution, and effective identi-
fying methods. 

Sophisticated tactile perception is important for achieving precise 

interaction with the environment, fine manipulation tasks, and artificial 
robot intelligent recognition [15–18]. The advancement of material 
modification and structure design in soft/flexible electronics has opened 
up new opportunities for the fabrication of devices that emulate tactile 
functions of the somatosensory system [19–28]. Tactile sensor arrays are 
constructed with diverse pressure sensing strategies (e.g., piezoresistive, 
piezoelectric, capacitive, and triboelectric) to extend into the desired 
pressure sensing matrix [29–38], thus holding the capability of tactile 
mapping in real-time. Moreover, efforts have been dedicated to 
extracting higher-level features from the sensing feedback signals, 
which further is utilized to realize the precise object identification with 
the assistance of algorithms [39–43]. However, pressure/force sensing is 
not sufficient to infer physical properties while substances with similar 
mechanical features, e.g., orange and tennis with similar softness, 
cannot be differentiated by only contact pressure. These tactile arrays 
with a single sensing mode impeded the fundamental grasping motion 
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based on complex object recognition, and therefore have exposed limi-
tations in applications of minimally invasive surgery, industrial picking, 
and prosthetic rehabilitation. 

To address these restrictions, additional efforts on combining the 
mechanical property with thermal features are explored to improve the 
recognition accuracy [44–50]. For instance, a tactile sensor with the 
integration of pressure and temperature sensing modules has been 
demonstrated to perceive contact pressure and thermal conductivity 
simultaneously, which can be applied to the robot hand for realizing 
garbage sorting [44]. Despite the notable progress has been achieved in 
the development of multifunctional tactile arrays, the sparse array dis-
tribution inevitably makes it a struggle to improve spatial resolution, 
thus rendering a great challenge to develop an artificial skin that is 
competent for the tactile distribution of complicated contact surfaces. 
The burdened elimination of mutual interference limits the simulta-
neous perception of multiple stimuli, resulting in poor sensing capability 
to decode complicated stimuli. Hence, it is highly desirable to develop 
and demonstrate a multimodal tactile array with high spatial resolution 
for future robots and human–machine interfaces. 

Here, we report a multisensory array with dense coverage of pressure 
and temperature sensing modules that are further integrated by screen 
printing into a tactile glove covering the full hand, which is capable of 
simultaneously and independently perceiving contact pressure and 
thermal conductivity to realize precise object recognition. The syner-
gistic effect of the multimodal configuration allows the arrayed tactile 
glove to distinguish the shape, pressure, temperature, and materials in a 
diverse set of objects. The tactile array assisted with the modified ma-
chine learning algorithm can effectively identify 20 kinds of objects with 
enhanced accuracy via the signal acquisition system. This smart glove 
reveals its potential as a promising solution for advanced human-
–machine interaction, which can benefit diversified areas, including 
artificial prosthetics, sorting industry, and microsurgery robots. 

2. Experimental sections 

2.1. Preparation of piezoresistive sensing material 

In a preliminary synthesis procedure, the multi-wall carbon nano-
tubes (MWCNTs, Aladdin Tech. Inc), sodium dodecyl benzene sulfonate 
(SDBS) surfactant, SiO2 nanoparticles, and silane coupling agent KH-560 
are mixed with Cyclohexane at a 5:10:3:2:1000 wt ratio. Mechanical 
stirring at a temperature of 90 ◦C for 20 min to yield a uniform solution. 
Next, adding the silicone rubber GD401 (1 g) into the solution of 
Cyclohexane (25 mL) to acquire the hybrid under vigorous stirring for 
30 min. The above two mixtures are poured into a beaker and sonicated 
for 30 min, followed by mechanical stirring for 1 h to get a uniform 
dispersion. After the mixed suspension turned viscous solution, the ob-
tained solution was then put into the vacuum drying oven for 10 min to 
remove air bubbles. 

2.2. Fabrication of multisensory tactile glove 

The flexible printed circuit board (FPCB) with a 100 µm-thick poly-
imide was designed to the shape of a glove by Altium Designer according 
to the size of the human hand. Among them, the electrode size for the 
pressure sensing module is 4 mm × 4 mm, and the electrode for the 
temperature sensing module is evaporated with a size of 1 mm × 1 mm. 
Then, the pressure-sensing arrays are fabricated by screen printing using 
conductive piezoresistive sensing material on a FPCB and cured in the 
oven at 80 ◦C for 8 h (Fig. S1). The thickness of the printed piezoresistive 
material is 300 µm. After removing the screen-printing mask, the laser- 
cut adhesive layer with a thickness of 50 µm is attached to the top of the 
bottom electrode. The temperature sensing arrays (Negative Tempera-
ture Coefficient Thermistor, Fuwen sensing Co., ltd) were further inte-
grated by spot welding. The dimension of the single temperature sensor 
used for the preparation of the tactile glove is 1 mm × 1 mm × 0.3 mm. 

In the end, the multisensory tactile glove was encapsulated with another 
FPCB to improve its robustness. 

2.3. Measurements of the sensing performance of the sensors 

To characterize the electrical response, the sensing signals from 
piezoresistive and temperature sensors were obtained using a semi-
conductor parameter analyzer (4200-SCS, Keithley). The pressure- 
loading tests were carried out using a mechanical testing system (INS-
TRON LEGEND2345). 

2.4. Design of the data acquisition circuit 

The designed circuit (Figs. S2 and S3) is comprised of a microcon-
troller Unit (MCU, nRF52832, Nordic), power supply (3.3 V and 2.048 
V), channel selection (TMUX1108), analog switch (RS2105XN), and 
analog-to-digital converter (ADC, i.e., ADS1115). In brief, the PCB is 
designed to achieve the integrated function of data acquisition, signal 
processing, and signal transmission. The pressure and temperature 
sensing signals from the tactile glove are sampling in turn through the 
channel selection and analog switch module. Then the acquired sensing 
signals are processed by an ADC module and sent to the MCU, which are 
further transmitted to Bluetooth chip through serial communication 
with a baud rate 119200. The critical parameter of the hardware device 
in the tactile acquisition system is summarized in Table S1. 

3. Results and discussion 

3.1. Design of the multisensory tactile glove 

Human skin is endowed with sensitivities to contact pressure and 
temperature to further infer the softness and material texture of the 
grasped object, which is attributed to the delicate and elaborate sensory 
receptors within dermal microstructures [51–54]. To mimic the physi-
ological functions of mechanoreceptors and thermoreceptors of human 
skin, a multifunctional tactile array is demonstrated with flexible pres-
sure and temperature sensing modules (Fig. 1a). The piezoresistive array 
is capable of decoding the softness and shape via the pressure mapping, 
whereas the thermo-sensitive array deposited on a polyimide substrate 
is utilized to differentiate the thermal conductivity. Combining me-
chanical features with the thermal property of an object and fusing the 
dual-mode sensing information, which enables enhanced recognition 
accuracy with the assistance of the machine learning models. The 
multisensory tactile array is integrated onto robotics to achieve precise 
object recognition (Fig. 1b), thus opening up new application opportu-
nities for object recognition in interactive human–machine interfaces. 

3.2. Property characterization of the pressure and temperature sensors 

To evaluate the pressure-sensing performance of piezoresistive sen-
sors, a quantitative analysis of piezoresistive output under pressure is 
carried out. The normalized relative resistance change (ΔR/R0, where R0 
refers to the initial resistance) of the piezoresistive layer as a function of 
the applied pressure, thereby showing its possibility to serve as a pres-
sure sensor. More contacts among MWCNT are produced upon the 
compressive deformation, which increases the conduction paths and 
thus decreases the electrical resistance. The measuring results indicate 
that the demonstrated relative current change depends on the MWCNT 
concentration, which allows the sensing performance to be tuned by the 
content of MWCNT. In particular, the piezoresistive sensor with the 5 % 
MWCNT concentration exhibits an optimal sensitivity of 0.74 kPa− 1 

when the pressure is below 2 kPa and a sensitivity of 0.13 kPa− 1 within 
the pressure range of 2–10 kPa (Fig. 2a). The excellent load-and-release 
performance has good reversibility and reliability repeated without a 
noticeable fluctuation in relative resistance change (Fig. 2b and S4a) 
after periodic cycles. The response and relaxation time of the 
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piezoresistive mode are determined to be 105 ms and 88 ms, respec-
tively (Fig. 2c). 

Besides the pressure-sensing performance, the capability of 
discriminating temperature is another important function for perceiving 
the external stimuli against the room temperature and improving envi-
ronmental interaction. As expected, the relative resistance of the 

temperature sensor decreases with increasing environmental tempera-
ture range from 0 to 100 ◦C, showing a nearly linear temperature co-
efficient of resistance (TCR) of 0.17 ◦C− 1 within the temperature of 
0–30 ◦C. In the high-temperature regime, the sensor exhibits a response 
with a sensitivity TCR of 0.95 ◦C− 1 (Fig. 2d). The response and relaxa-
tion time of the temperature mode are determined to be 194 ms and 928 

Fig. 1. Human skin-inspired tactile glove with 
object recognition capability. (a) Schematic il-
lustrations of the structure of human skin and 
multisensory tactile glove. Human skin is 
composed of mechanoreceptors and thermore-
ceptors. The multisensory arrays consist of 
pressure and temperature sensing modules to 
perceive external stimuli. (b) The synergistic ef-
fect of multisensory feedback enables the 
manipulator to achieve the task of object recog-
nition assisted with a deep convolutional neural 
network.   
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ms, respectively (Fig. S5). The durability of the temperature sensor was 
tested by loading–unloading heat of 50 ◦C for over 1000 cycles, thereby 
demonstrating the reproducible and stable sensing performance 
(Fig. S4b). Moreover, stability under various levels of temperatures is 
also critical to practical applications since temperature inevitably affects 
the response of piezoresistive devices. The pressure-sensing capability 
over the temperature range of 10–70 ◦C reveals that the increasing 
temperature leads to a relative resistance change (Fig. 2e), which is 
attributed to the improved mobility of ions. The relative resistance 

change of pressure sensors affected by temperature is less than 7 % 
(Fig. 2f), making it a promising candidate for perception in complicated 
environments. 

3.3. Structural and acquiring method of the tactile glove 

As a primary verification of the multipixel-sensing function, a 
multifunctional tactile glove is designed based on the pressure and 
temperature arrays to explore the perceptual capability. To demonstrate 

Fig. 2. The sensing performance of the multisensory tactile sensors. (a) The comparison of sensitivities of the piezoresistive layer with various MWCNT loading 
concentrations (4–6 %). (b) The real-time sensing response from the piezoresistive sensor for an applied pressure of 150 Pa, 400 Pa, and 600 Pa, respectively. (c) 
Determination of the response time for the piezoresistive sensor. (d) The resistance changes of the temperature sensor under various applied temperatures. (e) The 
resistance changes of the temperature sensor under various applied temperatures as a function of pressure. (f) The relative resistance changes of the temperature 
sensor under applied pressure range from 0 N to 10 N as a function of temperature. 
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the effect of the number of sensing points on the recognition accuracy, 
we have prepared three sensing arrays with various pressure elements (i. 
e., 2 × 2, 3 × 3, 4 × 4). The pressure distribution and recognition results 
(Fig. S6) indicate that sparser sensing arrays result in missing pressure 
mapping information of the object, thus reducing the recognition ac-
curacy. Therefore, the designed tactile glove consists of 112 sensing 
elements to improve the identification accuracy (Fig. 3a). The pressure- 
sensing module (i.e., black) consists of 80 sensing elements and is 
capable of measuring the mechanical stimuli, whereas the temperature- 
sensing module (i.e., red) with 32 sensors to decode the thermal 
response. In virtue of the above structural design, distributed electrodes 
(Fig. 3b) are attached to the flat polyimide substrate through thermal 
evaporation, thus forming the FPCB layer. The screen-printed 

technology is then adopted to fabricate the pressure arrays made of 
MWCNT and silicone rubber possessing the piezoresistive characteristic, 
with a layer of silicone rubber covered on the top. Meanwhile, the 
temperature arrays composed of thermistors are further integrated via 
the method of spot welding. The as-fabricated sensing matrix (Fig. 3c) is 
encapsulated with a polyimide layer. In particular, the knuckle region of 
the tactile glove is hollowed out, so that there will be no restriction on 
bending deformation. Due to the flexibility of the above materials, the 
whole tactile array can be pressed, rolled, folded, and twisted with high 
adaptivity (Fig. 3d), thus facilitating a conformal and scalable tactile 
glove covering the full hand. 

In addition to the significant role performed by the design of the 
array structure, an efficient and precise acquisition method of tactile 

Fig. 3. The structural and acquiring method of the tactile glove. (a) Exploded overall structure of tactile glove comprising of FPCB, pressure arrays, adhesive layer, 
and temperature arrays. (b) The design of electrode arrays by using Altium Designer. (c) Photograph of a tactile glove with dense coverage of multisensory sensing 
arrays. (d) Photograph illustrates the flexibility of the tactile glove that can be pressed, rolled, folded, and twisted. (e) The current change of eight pressure sensing 
channels under pressure. (f) The real-time sensing response from the temperature sensor for touching objects of different materials. 
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Fig. 4. Demonstration of pressure and temperature sensing functions of the tactile glove. (a) Photograph of the pressure and temperature distribution display. (b) The 
pressure distribution of four metal blocks. (c) The response of the tactile glove pressed and touched under various objects in daily life. (d) The temperature dis-
tribution of four metal blocks heated the temperature range from 10 ◦C to 45 ◦C. 
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arrays is particularly essential for avoiding crosstalk interferences in 
sensing signals. A multiple measuring resolution technology (Fig. S7) is 
demonstrated to achieve high-efficiency scanning, which eliminates 
crosstalk and reduces the power consumption through a few analog 
switches. For instance, crosstalk testing of the temperature array resis-
tance network is performed using the multiple measuring resolution and 
the direct measuring method (Fig. S8), the comparative result reveals 
that eight sensing signals tested by the multiple measuring technology 
provide accurate feedback of temperature changes without interference 
between them. Compared to the conventional secondary measuring 
method that requires 2 × n × m scanning for n × m sensing units (n is the 
row and m is the column), numbers of scans for only n × m are needed in 
the proposed multiple testing strategy, thus simplifying the circuit 
design and removing the necessity of negative power supply, opera-
tional amplifier, and other electronic devices. Therefore, this developed 
scanning technology allows for large area integrated sensing arrays with 
high resolution. 

To further validate the reliability of the signal acquiring technology, 
the pressure sensing test of the single-pixel sensor is firstly performed 
under press cycles ranging from 20 g to 100 g, indicating a stable sensing 
performance collected via the multiple scanning (Fig. S9). Based on the 
excellent capabilities of a single sensing unit, the homogeneity test of 
multipixel tactile arrays is subsequently carried out on eight sensing 
modules, from which we can see the consistency of current response of 
the tactile sensor array under the same stimulus (Fig. 3e). The evaluation 
of the temperature sensing performance through the proposed acquisi-
tion system is equally important, so objects of three different materials 
(i.e., stainless steel, plastic, and wood) are sequentially touched to the 
tactile glove to obtain the temperature profile over time (Fig. 3f). The 
temperature of the object made of stainless steel varies from 34 ◦C to 
27 ◦C within 4 s, and the rate of temperature change is significantly 
faster than the other two material objects. The mechanism of using 
temperature sensors for object recognition lies in the detected the speed 
of temperature change of the contact object with various thermal con-
ductivities to distinguish the material of the object. When the above 
three materials contact the temperature sensor, the conductive heat 
transfer from the sensor to its surroundings changes with the thermal 
conductivity of the objects. Hence, the thermal conductivity of different 
materials can be evaluated by identifying the temperature variation of 
the sensing unit, thus making it possible to differentiate between 
different materials. 

3.4. Object recognition assisted by the deep learning algorithm 

Upon the excellent sensing performance and efficient signal 
acquiring method, the tactile glove with integrated pressure and tem-
perature sensing arrays can be employed to explore the high-density 
mapping capabilities. The corresponding tactile signal display inter-
face is further designed and developed to intuitively reveal the spatial 
resolution of tactile glove (Fig. 4a). As the four metal alphabet blocks (i. 
e., ZJUT) are placed sequentially in the palm area of the tactile glove, 
apparent resistance changes from the corresponding pixels were 
collected and reproduced in pressure distribution images to determine 
the position and pressure magnitude (Fig. 4b). To further investigate the 
multipixel sensing capability of the tactile system when grasping an 
object in daily routine, various types of objects (e.g., smartphone, water 
bottle) are placed on top of the sensing array to demonstrate the pressure 
distribution generated by the loading (Fig. 4c), which is consistent with 
the shape of the displaced objects. Besides, the position where the ob-
jects with different curved surfaces is put has a significant change in 
resistance, and the magnitude and location of the pressure could also be 
recognized from the sensing mapping. Simultaneous multipixel pressure 
and temperature sensing are of great importance to giving effective 
feedback and achieving precise recognition. The measured temperature 
distribution agrees with the profile of the object shape, and the dis-
played temperature also matches the actual applied temperature to the 

metal alphabet blocks (Fig. 4d). These measuring results indicate the 
tactile arrays with high spatiotemporal resolution and multimodal 
sensing abilities, which facilitates the promising object-identifying 
application of the wearable tactile devices. 

Incorporating neural networks and deep learning with tactile sensors 
to extend the capability of accurate real-time object recognition. A 
tactile dataset is constructed from the 20 objects containing five cate-
gories (i.e., containers, fruits, balls, blocks, and daily necessities) with 
diverse sizes, shapes, and materials (Fig. 5a). Testing signals are ac-
quired by collecting circuits and then converted into pixels by normal-
izing to the range of 0 to 255 and transformed as a 25 × 32 × 32 image 
corresponding to their locations (Fig. 5b). The whole data (containing 
30 sets, 112 sets for each object) is divided into a training set (70 %) and 
a testing set (30 %) to train a convolutional neural network (CNN) 
model. Considering the multidimensional and enormous data acquired 
from the dual-mode sensing arrays, the CNN deep-learning algorithm is 
designed to conduct classification in the PyTorch framework (Fig. 5c). In 
particular, the reason for utilizing LeNet model as a foundational 
framework is because of its simplicity and reliability for automatically 
extracting features, as well as it is known for high performance in image 
classification. Representative strategies to modify this conventional 
LeNet architecture include 1) employing the residual learning connec-
tion; 2) increasing the Batch Normalization layer and using LeakyReLU 
as the activation function to accelerate the convergence speed of the 
model; 3) exploiting 1 × 1 convolutional layers instead of fully con-
nected layers to improve algorithm efficiency. 

The modified LeNet model shows a faster error reduction compared 
to that of LeNet network with traditional architecture (Fig. S10), where 
the error magnitude is reduced to 0.02315 after 200 training steps. The 
confusion map utilizing only pressure sensing feedback shows that the 
total classification accuracy reaches about 85.65 % (Fig. 5d-I). However, 
the pressure sensing module cannot accurately discriminate objects with 
similar sizes, shapes, and softness but with different materials. The 
incorporation of pressure sensing with temperature sensing can improve 
the object recognition accuracy to about 94.9 % (Fig. 5d-II), which 
combines mechanical features with thermal properties. The classifica-
tion results of various objects further confirm that exploring the rela-
tionship between temperature change and object material can 
effectively make up for the incompleteness of single pressure-sensing 
feedback, indicating it is feasible to utilize the multisensory tactile 
glove to recognize objects. 

3.5. Applications of multisensory tactile gloves on the object recognition 

The rapid development of multisensory electronic skins paves a way 
for the diversified application in object recognition, robot grasping 
tools, and human-robot interactions. Precisely capturing the real-time 
multidimensional stimuli creates application opportunities for identifi-
cation scenarios, and here we demonstrate a tactile glove with dense 
coverage of pressure/temperature sensing arrays. The complete real- 
time recognition system includes the tactile glove, signal preprocess-
ing circuit, MCU with wireless transmitter module, PC, and the display 
interface (Fig. 6a). In brief, the acquired sensing signals from the tactile 
arrays are processed by an analog-to-digital converter (ADC) after 
amplification and filtering out the ambient noise. Next, the MCU further 
receives digital signals from the ADC module, which are then sent to a 
workstation PC via a wireless transmission. Based on the received 
spectrum of signals, the PC will output the final recognition results 
through the assistance of a trained machine learning model. The time 
taken to transfer the data to the convolutional neural network model on 
PC to calculate the result is about 21 ms. The corresponding interface 
design of the object recognition consists of tactile signal display, serial 
communication, data acquisition, and object recognition results 
(Fig. 6b), which is developed to enable the visualization of object 
recognition results. Simultaneously, the integrated broadcast module 
will announce the corresponding prediction result after the tactile signal 

Y. Qiu et al.                                                                                                                                                                                                                                      



Chemical Engineering Journal 455 (2023) 140890

8

is analyzed via the training model. 
For a practical demonstration toward the future application of object 

recognition, a multimodal tactile array composed of pressure and tem-
perature sensing modules is equipped with rubber gloves, and further is 
integrated into the human hand to mimic the grasping motion of the 
prosthetic. The participant initially touches the object for the tempera-
ture sensing module on the tactile glove to reach thermal equilibrium 
with the human hand before carrying out the grasping action. After-
wards, the participant executes a stable grasping task of the measured 
object to obtain multisensory feedback information, which is further 
utilized to gain recognition results from the acquisition system. The 
corresponding spatial mapping of temperature and pressure are syn-
chronously displayed on the screen of the PC, analyzing the softness and 

material of various objects through the real-time distribution to imply 
the tennis grasped in this motion (Fig. 6c). The identification result is 
announced by voice module within the recognition system, leading to a 
gentle release of the object for the next round of operation. Besides, the 
duration of the whole process of the haptic glove from grasping the 
object to the voice broadcast of the recognition result is 5 s (Video S1), 
demonstrating an efficient capability to recognize objects. 

To further verify the functionality of the tactile glove, altogether 10 
voluntary participants conduct object recognition tests with the overall 
accuracy in differentiating 20 types of objects up to 94.2 % (Table S2), 
which is close to the classification accuracy of the test set (94.9 %). 
Compared to object identification in literatures [55–58,39,44,46] 
(Table. S3), the presented tactile glove shows a remarkable capability of 

Fig. 5. Object identification of deep learning-enabled tactile glove. (a) Photograph of 20 objects used in the dataset. (b) Schematics of the process for training and 
real-time identification. (c) The CNN architecture constructed for identifying objects from tactile information input. (d) Classification test confusion matrix of object 
recognition derived from the (I) pressuring-sensing arrays and (II) pressure–temperature multisensory signals. 
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possessing excellent recognition accuracy. This breakthrough behavior 
benefits from the combination of pressure and temperature arrays with 
high spatiotemporal sensing resolution, which is utilized to decode the 
softness and material of measured objects. We will further explore the 
integration of sensing arrays on robotic gripper to eliminate the multiple 

interferences during grasping motion and thus achieve accurate object 
recognition. On the basis of this proof of concept, the integration of 
tactile glove onto a robot hand will extend the utility of multisensory 
tactile arrays in dexterous tasks that require multi-information feed-
back. This work demonstrates the tactile glove covering the full hand 

Fig. 6. Integrated demonstration of object recognition application. (a) Schematic diagram of the recognition system and process for classification with feature 
visualization. (b) The interface design of object recognition system is based on the multisensory arrays. (c) Real-time presentation of object recognition results. 
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with high-density multisensory sensing arrays, providing crucial stra-
tegies for the tremendous potentials of intelligent sorting, prosthetics, 
and humanoid robotics. 

4. Conclusions 

In summary, we demonstrated a high-density tactile glove that is 
based on a screen-printed, multisensory array and has precise object 
recognition capabilities. The integrated pressure-sensing module works 
as mechanoreceptor with the ability to perceive contact pressure of 
grasped object, whereas the thermal conductivity of a material is 
recognized through the temperature-sensitive module to mimic the 
functional characteristics of the thermoreceptor. Simultaneous percep-
tion of the mechanical feature with thermal property, which facilitates 
the tactile glove with enhanced identification accuracy. By utilizing the 
multiple scanning technology, the signal acquiring method is capable of 
effectively eliminating crosstalk and reducing the power consumption 
assisted by the wireless transmission system. Through the integrated 
demonstration of object recognition application, 94.2 % accuracy of 
differentiating 20 kinds of grasped objects among ten participants has 
been achieved with deep learning analytics. The developed tactile glove 
reveals its potential as a promising solution for facilitating the dense 
coverage of sensing arrays with high spatiotemporal resolution and 
multimodal sensing abilities, which can benefit diversified areas, 
including microsurgery robots, human–machine interfacing, and 
advanced prosthetics. 
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